Cargando…
Machine learning for regulatory analysis and transcription factor target prediction in yeast
High throughput technologies, including array-based chromatin immunoprecipitation, have rapidly increased our knowledge of transcriptional maps—the identity and location of regulatory binding sites within genomes. Still, the full identification of sites, even in lower eukaryotes, remains largely inc...
Autores principales: | Holloway, Dustin T., Kon, Mark, DeLisi, Charles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Kluwer Academic Publishers
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533145/ https://www.ncbi.nlm.nih.gov/pubmed/19003435 http://dx.doi.org/10.1007/s11693-006-9003-3 |
Ejemplares similares
-
Classifying transcription factor targets and discovering relevant biological features
por: Holloway, Dustin T, et al.
Publicado: (2008) -
In silico regulatory analysis for exploring human disease progression
por: Holloway, Dustin T, et al.
Publicado: (2008) -
The interaction map of yeast: terra incognita?
por: Mellor, Joe, et al.
Publicado: (2006) -
Identification and Characterization of Renal Cell Carcinoma Gene Markers
por: Dalgin, Gul S., et al.
Publicado: (2007) -
Binding Site Graphs: A New Graph Theoretical Framework for Prediction of Transcription Factor Binding Sites
por: Reddy, Timothy E, et al.
Publicado: (2007)