Cargando…

Protein Microarray On-Demand: A Novel Protein Microarray System

We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatterjee, Deb K., Sitaraman, Kalavathy, Baptista, Cassio, Hartley, James, Hill, Thomas M., Munroe, David J.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533396/
https://www.ncbi.nlm.nih.gov/pubmed/18813342
http://dx.doi.org/10.1371/journal.pone.0003265
Descripción
Sumario:We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthesis of the protein of interest; they also serve to capture the newly synthesized proteins through a high affinity DNA-protein interaction. To accomplish this we have exploited the high-affinity binding (∼3–7×10 (−13) M) of E. coli Tus protein to Ter, a 20 bp DNA sequence involved in the regulation of E. coli DNA replication. In our system, each protein of interest is synthesized as a Tus fusion protein and each expression construct directing the protein synthesis contains embedded Ter DNA sequence. The embedded Ter sequence functions as a capture reagent for the newly synthesized Tus fusion protein. This “all DNA” microarray can be converted to a protein microarray on-demand without need for any additional capture reagent..