Cargando…

Regulation of Cell Survival and Death Signals Induced by Oxidative Stress

Oxidative stress stimulates two opposite signaling pathways leading to cell death and cell survival. Preferential selection of survival signals leads to the protection of cells against damage induced by reactive oxygen species, whereas preferential acceleration of death signals can be used to advant...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuwabara, Mikinori, Asanuma, Taketoshi, Niwa, Koichi, Inanami, Osamu
Formato: Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533719/
https://www.ncbi.nlm.nih.gov/pubmed/18818753
http://dx.doi.org/10.3164/jcbn.2008045
Descripción
Sumario:Oxidative stress stimulates two opposite signaling pathways leading to cell death and cell survival. Preferential selection of survival signals leads to the protection of cells against damage induced by reactive oxygen species, whereas preferential acceleration of death signals can be used to advantage in tumor therapy with oxidizing agents such as ionizing radiation and anticancer drugs. In vitro and in vivo experiments using cultured mammalian cells and experimental animals showed that ERK was included in survival signals and SAPK and p38 MAPK in death signals in oxidative stress. The activation of SAPK/JNK and subsequent expression of death receptor Fas on the cell surface caused the induction of cell death. The results mean that the acceleration of the activation of SAPK/JNK might lead to the enhancement of cell death by oxidizing agents like ionizing radiation and anticancer drugs. In fact, when cultured mammalian cells were exposed to ionizing radiation with 2-nitroimidazole derivatives having electrophilicity, the lethal effect of ionizing radiation was found to be enhanced together with the activation of SAPK/JNK and the enhancement of Fas expression. The activation of both survival and death signals was suppressed by the antioxidants N-acetylcystein and Trolox, suggesting that both signaling pathways are redox-regulated.