Cargando…
The Outcome of Phagocytic Cell Division with Infectious Cargo Depends on Single Phagosome Formation
Given that macrophages can proliferate and that certain microbes survive inside phagocytic cells, the question arises as to the post-mitotic distribution of microbial cargo. Using macrophage-like cells we evaluated the post-mitotic distribution of intracellular Cryptococcus yeasts and polystyrene be...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2535564/ https://www.ncbi.nlm.nih.gov/pubmed/18795151 http://dx.doi.org/10.1371/journal.pone.0003219 |
Sumario: | Given that macrophages can proliferate and that certain microbes survive inside phagocytic cells, the question arises as to the post-mitotic distribution of microbial cargo. Using macrophage-like cells we evaluated the post-mitotic distribution of intracellular Cryptococcus yeasts and polystyrene beads by comparing experimental data to a stochastic model. For beads, the post-mitotic distribution was that expected from chance alone. However, for yeast cells the post-mitotic distribution was unequal, implying preferential sorting to one daughter cell. This mechanism for unequal distribution was phagosomal fusion, which effectively reduced the intracellular particle number. Hence, post-mitotic intracellular particle distribution is stochastic, unless microbial and/or host factors promote unequal distribution into daughter cells. In our system unequal cargo distribution appeared to benefit the microbe by promoting host cell exocytosis. Post-mitotic infectious cargo distribution is a new parameter to consider in the study of intracellular pathogens since it could potentially define the outcome of phagocytic-microbial interactions. |
---|