Cargando…
Integration of relational and hierarchical network information for protein function prediction
BACKGROUND: In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a...
Autores principales: | Jiang, Xiaoyu, Nariai, Naoki, Steffen, Martin, Kasif, Simon, Kolaczyk, Eric D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2535605/ https://www.ncbi.nlm.nih.gov/pubmed/18721473 http://dx.doi.org/10.1186/1471-2105-9-350 |
Ejemplares similares
-
Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data
por: Nariai, Naoki, et al.
Publicado: (2007) -
Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets
por: Christadore, Lisa M, et al.
Publicado: (2014) -
Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network
por: Kordmahalleh, Mina Moradi, et al.
Publicado: (2017) -
A unified framework for the integration of multiple hierarchical clusterings or networks from multi-source data
por: Hulot, Audrey, et al.
Publicado: (2021) -
Predicting protein functions using incomplete hierarchical labels
por: Yu, Guoxian, et al.
Publicado: (2015)