Cargando…

Parameter estimation for robust HMM analysis of ChIP-chip data

BACKGROUND: Tiling arrays are an important tool for the study of transcriptional activity, protein-DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although hidden Markov models have been used successfully to analyse tiling array data, parameter estimation for thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Humburg, Peter, Bulger, David, Stone, Glenn
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536674/
https://www.ncbi.nlm.nih.gov/pubmed/18706106
http://dx.doi.org/10.1186/1471-2105-9-343
_version_ 1782159100885336064
author Humburg, Peter
Bulger, David
Stone, Glenn
author_facet Humburg, Peter
Bulger, David
Stone, Glenn
author_sort Humburg, Peter
collection PubMed
description BACKGROUND: Tiling arrays are an important tool for the study of transcriptional activity, protein-DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although hidden Markov models have been used successfully to analyse tiling array data, parameter estimation for these models is typically ad hoc. Especially in the context of ChIP-chip experiments, no standard procedures exist to obtain parameter estimates from the data. Common methods for the calculation of maximum likelihood estimates such as the Baum-Welch algorithm or Viterbi training are rarely applied in the context of tiling array analysis. RESULTS: Here we develop a hidden Markov model for the analysis of chromatin structure ChIP-chip tiling array data, using t emission distributions to increase robustness towards outliers. Maximum likelihood estimates are used for all model parameters. Two different approaches to parameter estimation are investigated and combined into an efficient procedure. CONCLUSION: We illustrate an efficient parameter estimation procedure that can be used for HMM based methods in general and leads to a clear increase in performance when compared to the use of ad hoc estimates. The resulting hidden Markov model outperforms established methods like TileMap in the context of histone modification studies.
format Text
id pubmed-2536674
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25366742008-09-16 Parameter estimation for robust HMM analysis of ChIP-chip data Humburg, Peter Bulger, David Stone, Glenn BMC Bioinformatics Methodology Article BACKGROUND: Tiling arrays are an important tool for the study of transcriptional activity, protein-DNA interactions and chromatin structure on a genome-wide scale at high resolution. Although hidden Markov models have been used successfully to analyse tiling array data, parameter estimation for these models is typically ad hoc. Especially in the context of ChIP-chip experiments, no standard procedures exist to obtain parameter estimates from the data. Common methods for the calculation of maximum likelihood estimates such as the Baum-Welch algorithm or Viterbi training are rarely applied in the context of tiling array analysis. RESULTS: Here we develop a hidden Markov model for the analysis of chromatin structure ChIP-chip tiling array data, using t emission distributions to increase robustness towards outliers. Maximum likelihood estimates are used for all model parameters. Two different approaches to parameter estimation are investigated and combined into an efficient procedure. CONCLUSION: We illustrate an efficient parameter estimation procedure that can be used for HMM based methods in general and leads to a clear increase in performance when compared to the use of ad hoc estimates. The resulting hidden Markov model outperforms established methods like TileMap in the context of histone modification studies. BioMed Central 2008-08-18 /pmc/articles/PMC2536674/ /pubmed/18706106 http://dx.doi.org/10.1186/1471-2105-9-343 Text en Copyright © 2008 Humburg et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Humburg, Peter
Bulger, David
Stone, Glenn
Parameter estimation for robust HMM analysis of ChIP-chip data
title Parameter estimation for robust HMM analysis of ChIP-chip data
title_full Parameter estimation for robust HMM analysis of ChIP-chip data
title_fullStr Parameter estimation for robust HMM analysis of ChIP-chip data
title_full_unstemmed Parameter estimation for robust HMM analysis of ChIP-chip data
title_short Parameter estimation for robust HMM analysis of ChIP-chip data
title_sort parameter estimation for robust hmm analysis of chip-chip data
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536674/
https://www.ncbi.nlm.nih.gov/pubmed/18706106
http://dx.doi.org/10.1186/1471-2105-9-343
work_keys_str_mv AT humburgpeter parameterestimationforrobusthmmanalysisofchipchipdata
AT bulgerdavid parameterestimationforrobusthmmanalysisofchipchipdata
AT stoneglenn parameterestimationforrobusthmmanalysisofchipchipdata