Cargando…
A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers
This manuscript describes a novel, linear mixed-effects model–fitting technique for the setting in which correlated data indicators are not completely observed. Mixed modeling is a useful analytical tool for characterizing genotype–phenotype associations among multiple potentially informative geneti...
Autores principales: | Foulkes, Andrea S., Yucel, Recai, Li, Xiaohong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536727/ https://www.ncbi.nlm.nih.gov/pubmed/18343883 http://dx.doi.org/10.1093/biostatistics/kxm055 |
Ejemplares similares
-
Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques
por: Griesbach, Colin, et al.
Publicado: (2021) -
Stepwise iterative maximum likelihood clustering approach
por: Sharma, Alok, et al.
Publicado: (2016) -
Ambiguous D-means fusion clustering algorithm based on ambiguous set theory: Special application in clustering of CT scan images of COVID-19
por: Singh, Pritpal, et al.
Publicado: (2021) -
A marginal quasi-likelihood approach to the analysis of Poisson variables with generalized linear mixed models
por: Foulley, JL, et al.
Publicado: (1993) -
Divisive hierarchical maximum likelihood clustering
por: Sharma, Alok, et al.
Publicado: (2017)