Cargando…
Large-scale directional relationship extraction and resolution
BACKGROUND: Relationships between entities such as genes, chemicals, metabolites, phenotypes and diseases in MEDLINE are often directional. That is, one may affect the other in a positive or negative manner. Detection of causality and direction is key in piecing pathways together and in examining po...
Autores principales: | Giles, Cory B, Wren, Jonathan D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2537562/ https://www.ncbi.nlm.nih.gov/pubmed/18793456 http://dx.doi.org/10.1186/1471-2105-9-S9-S11 |
Ejemplares similares
-
Predicting gene ontology from a global meta-analysis of 1-color microarray experiments
por: Dozmorov, Mikhail G, et al.
Publicado: (2011) -
Systematic classification of non-coding RNAs by epigenomic similarity
por: Dozmorov, Mikhail G, et al.
Publicado: (2013) -
mirCoX: a database of miRNA-mRNA expression correlations derived from RNA-seq meta-analysis
por: Giles, Cory B, et al.
Publicado: (2013) -
A scalable machine-learning approach to recognize chemical names within large text databases
por: Wren, Jonathan D
Publicado: (2006) -
Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data
por: Dozmorov, Mikhail G, et al.
Publicado: (2015)