Cargando…

Gene associations: true romance or chance meeting in a nuclear neighborhood?

Many recent studies have raised interest in the nuclear associations of coregulated genes from different chromosomes, often evoking interpretations of gene–gene interactions, communication, and even “romance.” However, in some cases, the associations may be indirect and infrequent and may reflect th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lawrence, Jeanne B., Clemson, Christine M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542465/
https://www.ncbi.nlm.nih.gov/pubmed/18809719
http://dx.doi.org/10.1083/jcb.200808121
Descripción
Sumario:Many recent studies have raised interest in the nuclear associations of coregulated genes from different chromosomes, often evoking interpretations of gene–gene interactions, communication, and even “romance.” However, in some cases, the associations may be indirect and infrequent and may reflect the segregation of active and inactive genes into different nuclear compartments. The study by Brown et al. (see p. 1083 of this issue) reports that the apparent association of erythroid genes is not a direct interaction nor colocalization to one tiny transcription factory but arises as a result of the known clustering of many active genes with larger splicing factor–rich speckles (a.k.a., SC35-defined domains). This clustering appears largely stochastic but is impacted by the chromosomal neighborhood of the gene as well as its transcriptional status. The study adds a new twist by examining the same gene in a foreign chromosomal context, providing evidence that this impacts a gene's propensity to form gene–domain (or apparent gene–gene) associations within nuclei.