Cargando…
A probabilistic generative model for GO enrichment analysis
The Gene Ontology (GO) is extensively used to analyze all types of high-throughput experiments. However, researchers still face several challenges when using GO and other functional annotation databases. One problem is the large number of multiple hypotheses that are being tested for each study. In...
Autores principales: | Lu, Yong, Rosenfeld, Roni, Simon, Itamar, Nau, Gerard J., Bar-Joseph, Ziv |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553574/ https://www.ncbi.nlm.nih.gov/pubmed/18676451 http://dx.doi.org/10.1093/nar/gkn434 |
Ejemplares similares
-
Probabilistic error correction for RNA sequencing
por: Le, Hai-Son, et al.
Publicado: (2013) -
ModuleBlast: identifying activated sub-networks within and across species
por: Zinman, Guy E., et al.
Publicado: (2015) -
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
Using single cell atlas data to reconstruct regulatory networks
por: Song, Qi, et al.
Publicado: (2023) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017)