Cargando…

Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)

BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dowd, Scot E., Wolcott, Randall D., Sun, Yan, McKeehan, Trevor, Smith, Ethan, Rhoads, Daniel
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556099/
https://www.ncbi.nlm.nih.gov/pubmed/18833331
http://dx.doi.org/10.1371/journal.pone.0003326
_version_ 1782159547994996736
author Dowd, Scot E.
Wolcott, Randall D.
Sun, Yan
McKeehan, Trevor
Smith, Ethan
Rhoads, Daniel
author_facet Dowd, Scot E.
Wolcott, Randall D.
Sun, Yan
McKeehan, Trevor
Smith, Ethan
Rhoads, Daniel
author_sort Dowd, Scot E.
collection PubMed
description BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP). Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections. Further work is definitely warranted and needed in order to prove whether the FEPs concept is a viable hypothesis. The findings here also suggest that traditional culturing methods may be extremely biased as a diagnostic tool as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to high-resolution molecular diagnostic methods such as bTEFAP.
format Text
id pubmed-2556099
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-25560992008-10-03 Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP) Dowd, Scot E. Wolcott, Randall D. Sun, Yan McKeehan, Trevor Smith, Ethan Rhoads, Daniel PLoS One Research Article BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP). Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections. Further work is definitely warranted and needed in order to prove whether the FEPs concept is a viable hypothesis. The findings here also suggest that traditional culturing methods may be extremely biased as a diagnostic tool as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to high-resolution molecular diagnostic methods such as bTEFAP. Public Library of Science 2008-10-03 /pmc/articles/PMC2556099/ /pubmed/18833331 http://dx.doi.org/10.1371/journal.pone.0003326 Text en Dowd et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Dowd, Scot E.
Wolcott, Randall D.
Sun, Yan
McKeehan, Trevor
Smith, Ethan
Rhoads, Daniel
Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title_full Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title_fullStr Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title_full_unstemmed Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title_short Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (bTEFAP)
title_sort polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded flx amplicon pyrosequencing (btefap)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556099/
https://www.ncbi.nlm.nih.gov/pubmed/18833331
http://dx.doi.org/10.1371/journal.pone.0003326
work_keys_str_mv AT dowdscote polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap
AT wolcottrandalld polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap
AT sunyan polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap
AT mckeehantrevor polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap
AT smithethan polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap
AT rhoadsdaniel polymicrobialnatureofchronicdiabeticfootulcerbiofilminfectionsdeterminedusingbacterialtagencodedflxampliconpyrosequencingbtefap