Cargando…
Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases
Several mysteries surround the structure and function of the nitric oxide synthases (NOS). The NOS oxygenase domain structure is unusually open with a large area of solvent that could accommodate an unidentified ligand. The exact mechanism of the two-step five-electron monoxygenation of arginine to...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Informa Healthcare
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556188/ https://www.ncbi.nlm.nih.gov/pubmed/18923642 http://dx.doi.org/10.1080/13590840701791863 |
_version_ | 1782159550356389888 |
---|---|
author | Wheatley, Carmen |
author_facet | Wheatley, Carmen |
author_sort | Wheatley, Carmen |
collection | PubMed |
description | Several mysteries surround the structure and function of the nitric oxide synthases (NOS). The NOS oxygenase domain structure is unusually open with a large area of solvent that could accommodate an unidentified ligand. The exact mechanism of the two-step five-electron monoxygenation of arginine to N(G)-hydroxy-L-arginine, thence to citrulline and nitric oxide (NO), is not clear, particularly as arginine/N(G)-hydroxy-L-arginine is bound at a great distance to the supposed catalytic heme Fe [III], as the anti-stereoisomer. The Return of the Scarlet Pimpernel Paper proposed that cobalamin is a primary indirect regulator of the NOS. An additional direct regulatory effect of the ‘base-off’ dimethylbenzimidazole of glutathionylcobalamin (GSCbl), which may act as a sixth ligand to the heme iron, promote Co-oriented, BH(4)/BH(3) radical catalysed oxidation of L-arginine to NO, and possibly regulate the rate of inducible NOS/NO production by the NOS dimers, is further advanced. The absence of homology between the NOS and methionine synthase/methylmalonyl CoA mutase may enable GSCbl to regulate both sets of enzymes simultaneously by completely separate mechanisms. Thus, cobalamin may exert central control over both pro-and anti-inflammatory systems. |
format | Text |
id | pubmed-2556188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Informa Healthcare |
record_format | MEDLINE/PubMed |
spelling | pubmed-25561882008-10-14 Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases Wheatley, Carmen J Nutr Environ Med Original Research Several mysteries surround the structure and function of the nitric oxide synthases (NOS). The NOS oxygenase domain structure is unusually open with a large area of solvent that could accommodate an unidentified ligand. The exact mechanism of the two-step five-electron monoxygenation of arginine to N(G)-hydroxy-L-arginine, thence to citrulline and nitric oxide (NO), is not clear, particularly as arginine/N(G)-hydroxy-L-arginine is bound at a great distance to the supposed catalytic heme Fe [III], as the anti-stereoisomer. The Return of the Scarlet Pimpernel Paper proposed that cobalamin is a primary indirect regulator of the NOS. An additional direct regulatory effect of the ‘base-off’ dimethylbenzimidazole of glutathionylcobalamin (GSCbl), which may act as a sixth ligand to the heme iron, promote Co-oriented, BH(4)/BH(3) radical catalysed oxidation of L-arginine to NO, and possibly regulate the rate of inducible NOS/NO production by the NOS dimers, is further advanced. The absence of homology between the NOS and methionine synthase/methylmalonyl CoA mutase may enable GSCbl to regulate both sets of enzymes simultaneously by completely separate mechanisms. Thus, cobalamin may exert central control over both pro-and anti-inflammatory systems. Informa Healthcare 2007 2008-01-10 /pmc/articles/PMC2556188/ /pubmed/18923642 http://dx.doi.org/10.1080/13590840701791863 Text en © 2007 Informa UK Ltd http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wheatley, Carmen Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title | Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title_full | Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title_fullStr | Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title_full_unstemmed | Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title_short | Cobalamin in inflammation III — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases |
title_sort | cobalamin in inflammation iii — glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? how cobalamin may directly regulate the nitric oxide synthases |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556188/ https://www.ncbi.nlm.nih.gov/pubmed/18923642 http://dx.doi.org/10.1080/13590840701791863 |
work_keys_str_mv | AT wheatleycarmen cobalaminininflammationiiiglutathionylcobalaminandmethylcobalaminadenosylcobalamincoenzymestheswordinthestonehowcobalaminmaydirectlyregulatethenitricoxidesynthases |