Cargando…

Augmentation of Pulmonary Epithelial Cell IL-8 Expression and Permeability by Pre-B-cell Colony Enhancing Factor

BACKGROUND: Previous studies in our lab have identified Pre-B-cell colony enhancing factor (PBEF) as a novel biomarker in acute lung injury (ALI). The molecular mechanism of PBEF involvement in the pathogenesis of ALI is still incompletely understood. This study examined the role of PBEF in regulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hailong, Liu, Peng, Cepeda, Javier, Fang, Deyu, Easley, R Blaine, Simon, Brett A, Zhang, Li Qin, Ye, Shui Qing
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559829/
https://www.ncbi.nlm.nih.gov/pubmed/18808711
http://dx.doi.org/10.1186/1476-9255-5-15
Descripción
Sumario:BACKGROUND: Previous studies in our lab have identified Pre-B-cell colony enhancing factor (PBEF) as a novel biomarker in acute lung injury (ALI). The molecular mechanism of PBEF involvement in the pathogenesis of ALI is still incompletely understood. This study examined the role of PBEF in regulating pulmonary alveolar epithelial cell IL-8 expression and permeability. METHODS: Human pulmonary alveolar epithelial cells (cell line and primary cells) were transfected with human PBEF cDNA or PBEF siRNA and then cultured in the presence or absence of TNFα. PBEF and IL-8 expression were analyzed by RT-PCR and Western blotting. In addition, changes in pulmonary alveolar epithelial and artery endothelial cell barrier regulation with altered PBEF expression was evaluated by an in vitro cell permeability assay. RESULTS: Our results demonstrated that, in human pulmonary alveolar epithelial cells, the overexpression of PBEF significantly augmented basal and TNFα-stimulated IL-8 secretion by more than 5 to 10-fold and increased cell permeability by >30%; the knockdown of PBEF expression with siRNA significantly inhibited basal and TNFα-stimulated IL-8 secretion by 70% and IL-8 mRNA levels by 74%. Further, the knockdown of PBEF expression also significantly attenuated TNFα-induced cell permeability by 43%. Similar result was observed in human pulmonary artery endothelial cells. CONCLUSION: These results suggest that PBEF may play a vital role in basal and TNFα-mediated pulmonary inflammation and pulmonary epithelial barrier dysfunction via its regulation of other inflammatory cytokines such as IL-8, which could in part explain the role of PBEF in the susceptibility and pathogenesis of ALI. These results lend further support to the potential of PBEF to serve as a diagnostic and therapeutic target to ALI.