Cargando…
Approaches to reduce false positives and false negatives in the analysis of microarray data: applications in type 1 diabetes research
BACKGROUND: As studies of molecular biology system attempt to achieve a comprehensive understanding of a particular system, Type 1 errors may be a significant problem. However, few investigators are inclined to accept the increase in Type 2 errors (false positives) that may result when less stringen...
Autores principales: | Wu, Jian, Lenchik, Nataliya I, Gerling, Ivan C |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559876/ https://www.ncbi.nlm.nih.gov/pubmed/18831777 http://dx.doi.org/10.1186/1471-2164-9-S2-S12 |
Ejemplares similares
-
Underlying causes for prevalent false positives and false negatives in STARR-seq data
por: Ni, Pengyu, et al.
Publicado: (2023) -
Balancing false positives and false negatives for the detection of differential expression in malignancies
por: De Smet, F, et al.
Publicado: (2004) -
Hydrophobicity identifies false positives and false negatives in peptide-MHC binding
por: Solanki, Arnav, et al.
Publicado: (2022) -
False Positive and False Negative FDG-PET Scans in Various Thoracic Diseases
por: Chang, Jung Min, et al.
Publicado: (2006) -
False-positive and false-negative risks for individual multicentre trials in critical care
por: Sidebotham, David, et al.
Publicado: (2022)