Cargando…
Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data
BACKGROUND: Microarrays have the capacity to measure the expressions of thousands of genes in parallel over many experimental samples. The unsupervised classification technique of bicluster analysis has been employed previously to uncover gene expression correlations over subsets of samples with the...
Autores principales: | Bryan, Kenneth, Cunningham, Pádraig |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559885/ https://www.ncbi.nlm.nih.gov/pubmed/18831786 http://dx.doi.org/10.1186/1471-2164-9-S2-S20 |
Ejemplares similares
-
Bayesian biclustering of gene expression data
por: Gu, Jiajun, et al.
Publicado: (2008) -
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
Bi-Force: large-scale bicluster editing and its application to gene
expression data biclustering
por: Sun, Peng, et al.
Publicado: (2014) -
Seed-Based Biclustering of Gene Expression Data
por: An, Jiyuan, et al.
Publicado: (2012) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010)