Cargando…
Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis
BACKGROUND: Dimension reduction is a critical issue in the analysis of microarray data, because the high dimensionality of gene expression microarray data set hurts generalization performance of classifiers. It consists of two types of methods, i.e. feature selection and feature extraction. Principl...
Autores principales: | Li, Guo-Zheng, Bu, Hua-Long, Yang, Mary Qu, Zeng, Xue-Qiang, Yang, Jack Y |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559889/ https://www.ncbi.nlm.nih.gov/pubmed/18831790 http://dx.doi.org/10.1186/1471-2164-9-S2-S24 |
Ejemplares similares
-
The projection score - an evaluation criterion for variable subset selection in PCA visualization
por: Fontes, Magnus, et al.
Publicado: (2011) -
Classification and Authentication of Paprika by UHPLC-HRMS Fingerprinting and Multivariate Calibration Methods (PCA and PLS-DA)
por: Barbosa, Sergio, et al.
Publicado: (2020) -
Feature selection using distributions of orthogonal PLS regression vectors in spectral data
por: Lee, Geonseok, et al.
Publicado: (2021) -
The PLS-selection unit users manual
por: Siesling, E
Publicado: (1997) -
The PLS-selection unit specialist manual
por: Siesling, E
Publicado: (1997)