Cargando…
Gene selection algorithm by combining reliefF and mRMR
BACKGROUND: Gene expression data usually contains a large number of genes, but a small number of samples. Feature selection for gene expression data aims at finding a set of genes that best discriminate biological samples of different types. In this paper, we present a two-stage selection algorithm...
Autores principales: | Zhang, Yi, Ding, Chris, Li, Tao |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559892/ https://www.ncbi.nlm.nih.gov/pubmed/18831793 http://dx.doi.org/10.1186/1471-2164-9-S2-S27 |
Ejemplares similares
-
Prediction of Protein Domain with mRMR Feature Selection and Analysis
por: Li, Bi-Qing, et al.
Publicado: (2012) -
Deep Learning Based Feature Selection Algorithm for Small Targets Based on mRMR
por: Ren, Zhigang, et al.
Publicado: (2022) -
Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS
por: Li, Bi-Qing, et al.
Publicado: (2012) -
mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling
por: Alshamlan, Hala, et al.
Publicado: (2015) -
Identification of Thyroid Carcinoma Related Genes with mRMR and Shortest Path Approaches
por: Xu, Yaping, et al.
Publicado: (2014)