Cargando…
Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning
The growing body of DNA microarray data has the potential to advance our understanding of the molecular basis of disease. However annotating microarray datasets with clinically useful information is not always possible, as this often requires access to detailed patient records. In this study we intr...
Autores principales: | Harris, Cole, Ghaffari, Noushin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559897/ https://www.ncbi.nlm.nih.gov/pubmed/18831798 http://dx.doi.org/10.1186/1471-2164-9-S2-S7 |
Ejemplares similares
-
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
por: Tiu, Ekin, et al.
Publicado: (2022) -
Tumor type classification and candidate cancer-specific biomarkers discovery via semi-supervised learning
por: Chen, Peng, et al.
Publicado: (2023) -
Semi-supervised discovery of differential genes
por: Oba, Shigeyuki, et al.
Publicado: (2006) -
Semi-supervised learning /
Publicado: (2010) -
Identification of Unannotated Small Genes in Salmonella
por: Baek, Jonghwan, et al.
Publicado: (2017)