Cargando…
SLC2A9 Is a High-Capacity Urate Transporter in Humans
BACKGROUND: Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561076/ https://www.ncbi.nlm.nih.gov/pubmed/18842065 http://dx.doi.org/10.1371/journal.pmed.0050197 |
_version_ | 1782159712131743744 |
---|---|
author | Caulfield, Mark J Munroe, Patricia B O'Neill, Deb Witkowska, Kate Charchar, Fadi J Doblado, Manuel Evans, Sarah Eyheramendy, Susana Onipinla, Abiodun Howard, Philip Shaw-Hawkins, Sue Dobson, Richard J Wallace, Chris Newhouse, Stephen J Brown, Morris Connell, John M Dominiczak, Anna Farrall, Martin Lathrop, G. Mark Samani, Nilesh J Kumari, Meena Marmot, Michael Brunner, Eric Chambers, John Elliott, Paul Kooner, Jaspal Laan, Maris Org, Elin Veldre, Gudrun Viigimaa, Margus Cappuccio, Francesco P Ji, Chen Iacone, Roberto Strazzullo, Pasquale Moley, Kelle H Cheeseman, Chris |
author_facet | Caulfield, Mark J Munroe, Patricia B O'Neill, Deb Witkowska, Kate Charchar, Fadi J Doblado, Manuel Evans, Sarah Eyheramendy, Susana Onipinla, Abiodun Howard, Philip Shaw-Hawkins, Sue Dobson, Richard J Wallace, Chris Newhouse, Stephen J Brown, Morris Connell, John M Dominiczak, Anna Farrall, Martin Lathrop, G. Mark Samani, Nilesh J Kumari, Meena Marmot, Michael Brunner, Eric Chambers, John Elliott, Paul Kooner, Jaspal Laan, Maris Org, Elin Veldre, Gudrun Viigimaa, Margus Cappuccio, Francesco P Ji, Chen Iacone, Roberto Strazzullo, Pasquale Moley, Kelle H Cheeseman, Chris |
author_sort | Caulfield, Mark J |
collection | PubMed |
description | BACKGROUND: Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man. METHODS AND FINDINGS: We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (K (i) = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size −0.12 mm Hg, 95% CI −0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size −0.03 mm Hg, 95% CI −0.39 to 0.31, p = 0.82). CONCLUSIONS: This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout. |
format | Text |
id | pubmed-2561076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-25610762008-10-28 SLC2A9 Is a High-Capacity Urate Transporter in Humans Caulfield, Mark J Munroe, Patricia B O'Neill, Deb Witkowska, Kate Charchar, Fadi J Doblado, Manuel Evans, Sarah Eyheramendy, Susana Onipinla, Abiodun Howard, Philip Shaw-Hawkins, Sue Dobson, Richard J Wallace, Chris Newhouse, Stephen J Brown, Morris Connell, John M Dominiczak, Anna Farrall, Martin Lathrop, G. Mark Samani, Nilesh J Kumari, Meena Marmot, Michael Brunner, Eric Chambers, John Elliott, Paul Kooner, Jaspal Laan, Maris Org, Elin Veldre, Gudrun Viigimaa, Margus Cappuccio, Francesco P Ji, Chen Iacone, Roberto Strazzullo, Pasquale Moley, Kelle H Cheeseman, Chris PLoS Med Research Article BACKGROUND: Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man. METHODS AND FINDINGS: We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (K (i) = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size −0.12 mm Hg, 95% CI −0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size −0.03 mm Hg, 95% CI −0.39 to 0.31, p = 0.82). CONCLUSIONS: This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout. Public Library of Science 2008-10 2008-10-07 /pmc/articles/PMC2561076/ /pubmed/18842065 http://dx.doi.org/10.1371/journal.pmed.0050197 Text en : © 2008 Caulfield et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Caulfield, Mark J Munroe, Patricia B O'Neill, Deb Witkowska, Kate Charchar, Fadi J Doblado, Manuel Evans, Sarah Eyheramendy, Susana Onipinla, Abiodun Howard, Philip Shaw-Hawkins, Sue Dobson, Richard J Wallace, Chris Newhouse, Stephen J Brown, Morris Connell, John M Dominiczak, Anna Farrall, Martin Lathrop, G. Mark Samani, Nilesh J Kumari, Meena Marmot, Michael Brunner, Eric Chambers, John Elliott, Paul Kooner, Jaspal Laan, Maris Org, Elin Veldre, Gudrun Viigimaa, Margus Cappuccio, Francesco P Ji, Chen Iacone, Roberto Strazzullo, Pasquale Moley, Kelle H Cheeseman, Chris SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title | SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title_full | SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title_fullStr | SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title_full_unstemmed | SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title_short | SLC2A9 Is a High-Capacity Urate Transporter in Humans |
title_sort | slc2a9 is a high-capacity urate transporter in humans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561076/ https://www.ncbi.nlm.nih.gov/pubmed/18842065 http://dx.doi.org/10.1371/journal.pmed.0050197 |
work_keys_str_mv | AT caulfieldmarkj slc2a9isahighcapacityuratetransporterinhumans AT munroepatriciab slc2a9isahighcapacityuratetransporterinhumans AT oneilldeb slc2a9isahighcapacityuratetransporterinhumans AT witkowskakate slc2a9isahighcapacityuratetransporterinhumans AT charcharfadij slc2a9isahighcapacityuratetransporterinhumans AT dobladomanuel slc2a9isahighcapacityuratetransporterinhumans AT evanssarah slc2a9isahighcapacityuratetransporterinhumans AT eyheramendysusana slc2a9isahighcapacityuratetransporterinhumans AT onipinlaabiodun slc2a9isahighcapacityuratetransporterinhumans AT howardphilip slc2a9isahighcapacityuratetransporterinhumans AT shawhawkinssue slc2a9isahighcapacityuratetransporterinhumans AT dobsonrichardj slc2a9isahighcapacityuratetransporterinhumans AT wallacechris slc2a9isahighcapacityuratetransporterinhumans AT newhousestephenj slc2a9isahighcapacityuratetransporterinhumans AT brownmorris slc2a9isahighcapacityuratetransporterinhumans AT connelljohnm slc2a9isahighcapacityuratetransporterinhumans AT dominiczakanna slc2a9isahighcapacityuratetransporterinhumans AT farrallmartin slc2a9isahighcapacityuratetransporterinhumans AT lathropgmark slc2a9isahighcapacityuratetransporterinhumans AT samaninileshj slc2a9isahighcapacityuratetransporterinhumans AT kumarimeena slc2a9isahighcapacityuratetransporterinhumans AT marmotmichael slc2a9isahighcapacityuratetransporterinhumans AT brunnereric slc2a9isahighcapacityuratetransporterinhumans AT chambersjohn slc2a9isahighcapacityuratetransporterinhumans AT elliottpaul slc2a9isahighcapacityuratetransporterinhumans AT koonerjaspal slc2a9isahighcapacityuratetransporterinhumans AT laanmaris slc2a9isahighcapacityuratetransporterinhumans AT orgelin slc2a9isahighcapacityuratetransporterinhumans AT veldregudrun slc2a9isahighcapacityuratetransporterinhumans AT viigimaamargus slc2a9isahighcapacityuratetransporterinhumans AT cappucciofrancescop slc2a9isahighcapacityuratetransporterinhumans AT jichen slc2a9isahighcapacityuratetransporterinhumans AT iaconeroberto slc2a9isahighcapacityuratetransporterinhumans AT strazzullopasquale slc2a9isahighcapacityuratetransporterinhumans AT moleykelleh slc2a9isahighcapacityuratetransporterinhumans AT cheesemanchris slc2a9isahighcapacityuratetransporterinhumans |