Cargando…
Distinguishing compounds with anticancer activity by ANN using inductive QSAR descriptors
This article describes a method developed for predicting anticancer/non-anticancer drugs using artificial neural network (ANN). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. Using 30 ‘inductive’ QSAR descriptors alone, we have been a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561164/ https://www.ncbi.nlm.nih.gov/pubmed/18841240 |
Sumario: | This article describes a method developed for predicting anticancer/non-anticancer drugs using artificial neural network (ANN). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. Using 30 ‘inductive’ QSAR descriptors alone, we have been able to achieve 84.28% accuracy for correct separation of compounds with- and without anticancer activity. For the complete set of 30 inductive QSAR descriptors, ANN based method reveals a superior model (accuracy = 84.28%, Q(pred) = 74.28%, sensitivity = 0.9285, specificity = 0.7857, Matthews correlation coefficient (MCC) = 0.6998). The method was trained and tested on a non redundant data set of 380 drugs (122 anticancer and 258 non-anticancer). The elaborated QSAR model based on the Artificial Neural Networks approach has been extensively validated and has confidently assigned anticancer character to a number of trial anticancer drugs from the literature. |
---|