Cargando…
Distinguishing compounds with anticancer activity by ANN using inductive QSAR descriptors
This article describes a method developed for predicting anticancer/non-anticancer drugs using artificial neural network (ANN). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. Using 30 ‘inductive’ QSAR descriptors alone, we have been a...
Autores principales: | Jaiswal, Kunal, Naik, Pradeep Kumar |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561164/ https://www.ncbi.nlm.nih.gov/pubmed/18841240 |
Ejemplares similares
-
Predicting highly-connected hubs in protein interaction networks by QSAR and biological data descriptors
por: Hsing, Michael, et al.
Publicado: (2009) -
An ANN model for treatment prediction in HBV patients
por: Iqbal, Sajid, et al.
Publicado: (2011) -
Virtual screening and pharmacophore studies for ftase inhibitors using Indian plant anticancer compounds database
por: Khan, Abdul Hafeez, et al.
Publicado: (2010) -
QSAR based predictive modeling for anti-malarial molecules
por: Bharti, Deepak R., et al.
Publicado: (2017) -
A 3D-QSAR model based screen for dihydropyridine-like compound library to identify inhibitors of amyloid beta (Aβ) production
por: Mathura, Venkatarajan S, et al.
Publicado: (2010)