Cargando…
The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets – improving meta-analysis and prediction of prognosis
BACKGROUND: The number of gene expression studies in the public domain is rapidly increasing, representing a highly valuable resource. However, dataset-specific bias precludes meta-analysis at the raw transcript level, even when the RNA is from comparable sources and has been processed on the same m...
Autores principales: | Sims, Andrew H, Smethurst, Graeme J, Hey, Yvonne, Okoniewski, Michal J, Pepper, Stuart D, Howell, Anthony, Miller, Crispin J, Clarke, Robert B |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563019/ https://www.ncbi.nlm.nih.gov/pubmed/18803878 http://dx.doi.org/10.1186/1755-8794-1-42 |
Ejemplares similares
-
Comprehensive Analysis of Affymetrix Exon Arrays Using BioConductor
por: Okoniewski, Michał J, et al.
Publicado: (2008) -
Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations
por: Okoniewski, Michał J, et al.
Publicado: (2006) -
Exon level integration of proteomics and microarray data
por: Bitton, Danny A, et al.
Publicado: (2008) -
A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling
por: Bradford, James R, et al.
Publicado: (2010) -
X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis
por: Yates, Tim, et al.
Publicado: (2008)