Cargando…
Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells
OBJECTIVE: Chronic inflammation in ulcerative colitis is associated with increased risk for colorectal cancer. Its molecular pathway of cancer development is poorly understood. We investigated the role of neutrophil-derived cellular stress in an in vitro model of neutrophils as effectors and colon e...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2564829/ https://www.ncbi.nlm.nih.gov/pubmed/18272544 http://dx.doi.org/10.1136/gut.2007.141556 |
_version_ | 1782159800826593280 |
---|---|
author | Campregher, C Luciani, M G Gasche, C |
author_facet | Campregher, C Luciani, M G Gasche, C |
author_sort | Campregher, C |
collection | PubMed |
description | OBJECTIVE: Chronic inflammation in ulcerative colitis is associated with increased risk for colorectal cancer. Its molecular pathway of cancer development is poorly understood. We investigated the role of neutrophil-derived cellular stress in an in vitro model of neutrophils as effectors and colon epithelial cells as targets, and tested for changes in cell cycle distribution and the appearance of replication errors. DESIGN: Colon epithelial cells with different mismatch repair phenotypes were co-cultured with activated neutrophils. Target cells were analysed for cell cycle distribution and replication errors by flow cytometry. Changes in nuclear and DNA-bound levels of mismatch repair- and checkpoint-related proteins were analysed by western blotting. RESULTS: Activated neutrophils cause an accumulation of target cells in G2/M, consistent with the installation of a DNA-damage checkpoint. Cells that do not express hMSH2, p53 or p21(waf1/cip1) failed to undergo the G2/M arrest. Phosphorylation of p53 at site Ser15 and Chk1 at Ser317, as well as accumulation of p21(waf1/cip1), was observed within 8–24 h. Superoxide dismutase and catalase were unable to overcome this G2/M arrest, possibly indicating that neutrophil products other than superoxide or H(2)O(2) are involved in this cellular response. Finally, exposure to activated neutrophils increased the number of replication errors. CONCLUSIONS: By using an in vitro co-culture model that mimics intestinal inflammation in ulcerative colitis, we provide molecular evidence for an hMSH2-dependent G2/M checkpoint arrest and for the presence of replication errors. |
format | Text |
id | pubmed-2564829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-25648292008-10-24 Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells Campregher, C Luciani, M G Gasche, C Gut Colorectal Cancer OBJECTIVE: Chronic inflammation in ulcerative colitis is associated with increased risk for colorectal cancer. Its molecular pathway of cancer development is poorly understood. We investigated the role of neutrophil-derived cellular stress in an in vitro model of neutrophils as effectors and colon epithelial cells as targets, and tested for changes in cell cycle distribution and the appearance of replication errors. DESIGN: Colon epithelial cells with different mismatch repair phenotypes were co-cultured with activated neutrophils. Target cells were analysed for cell cycle distribution and replication errors by flow cytometry. Changes in nuclear and DNA-bound levels of mismatch repair- and checkpoint-related proteins were analysed by western blotting. RESULTS: Activated neutrophils cause an accumulation of target cells in G2/M, consistent with the installation of a DNA-damage checkpoint. Cells that do not express hMSH2, p53 or p21(waf1/cip1) failed to undergo the G2/M arrest. Phosphorylation of p53 at site Ser15 and Chk1 at Ser317, as well as accumulation of p21(waf1/cip1), was observed within 8–24 h. Superoxide dismutase and catalase were unable to overcome this G2/M arrest, possibly indicating that neutrophil products other than superoxide or H(2)O(2) are involved in this cellular response. Finally, exposure to activated neutrophils increased the number of replication errors. CONCLUSIONS: By using an in vitro co-culture model that mimics intestinal inflammation in ulcerative colitis, we provide molecular evidence for an hMSH2-dependent G2/M checkpoint arrest and for the presence of replication errors. BMJ Publishing Group 2008-06 2008-02-13 /pmc/articles/PMC2564829/ /pubmed/18272544 http://dx.doi.org/10.1136/gut.2007.141556 Text en © Campregher et al 2008 http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Colorectal Cancer Campregher, C Luciani, M G Gasche, C Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title | Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title_full | Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title_fullStr | Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title_full_unstemmed | Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title_short | Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells |
title_sort | activated neutrophils induce an hmsh2-dependent g2/m checkpoint arrest and replication errors at a (ca)13-repeat in colon epithelial cells |
topic | Colorectal Cancer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2564829/ https://www.ncbi.nlm.nih.gov/pubmed/18272544 http://dx.doi.org/10.1136/gut.2007.141556 |
work_keys_str_mv | AT campregherc activatedneutrophilsinduceanhmsh2dependentg2mcheckpointarrestandreplicationerrorsataca13repeatincolonepithelialcells AT lucianimg activatedneutrophilsinduceanhmsh2dependentg2mcheckpointarrestandreplicationerrorsataca13repeatincolonepithelialcells AT gaschec activatedneutrophilsinduceanhmsh2dependentg2mcheckpointarrestandreplicationerrorsataca13repeatincolonepithelialcells |