Cargando…
Operant Discriminative Learning and Evidence of Subtelencephalic Plastic Changes After Long-Term Detelencephalation in Pigeons
We analyzed operant discrimination in detelencephalated pigeons and neuroanatomical substrates after long-term detelencephalation. In Experiment I, experimental pigeons with massive telencephalic ablation and control pigeons were conditioned to key peck for food. Successive discrimination was made u...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565432/ https://www.ncbi.nlm.nih.gov/pubmed/15152980 http://dx.doi.org/10.1155/NP.2003.247 |
_version_ | 1782159908202872832 |
---|---|
author | Cerutti, S. M. Diaz-Cintra, S. Cintra, L. Ferrari, E. A. M. |
author_facet | Cerutti, S. M. Diaz-Cintra, S. Cintra, L. Ferrari, E. A. M. |
author_sort | Cerutti, S. M. |
collection | PubMed |
description | We analyzed operant discrimination in detelencephalated pigeons and neuroanatomical substrates after long-term detelencephalation. In Experiment I, experimental pigeons with massive telencephalic ablation and control pigeons were conditioned to key peck for food. Successive discrimination was made under alternating red (variable-ratio reinforcement) and yellow (extinction) lights in one key of the chamber. These relations were interchanged during reversal discrimination. The sessions were run until steady-state rates were achieved. Experiment II analyzed the morphology of the nucleus rotundus and optic tectum in long-term detelencephalated and control birds, using a Klüver-Barrera staining and image analyzer system. Detelencephalated birds had more training sessions for response shaping and steady-state behavior (p<0.001), higher red key peck rates during discrimination (p<0.01), and reversal discrimination indexes around 0.50. Morphometric analysis revealed a decreased number of neurons and increased vascularity, associated with increases in the perimeter (p<0.001) in the nucleus rotundus. In the optic tectum, increases in the perimeter (p<0.05) associated with disorganization in the layers arrangement were seen. The data indicate that telencephalic systems might have an essential function in reversal operant discrimination learning. The structural characteristics of subtelencephalic systems after long-term detelencephalation evidence plastic changes that might be related to functional mechanisms of learning and neural plasticity in pigeons. |
format | Text |
id | pubmed-2565432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2003 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-25654322008-10-16 Operant Discriminative Learning and Evidence of Subtelencephalic Plastic Changes After Long-Term Detelencephalation in Pigeons Cerutti, S. M. Diaz-Cintra, S. Cintra, L. Ferrari, E. A. M. Neural Plast Article We analyzed operant discrimination in detelencephalated pigeons and neuroanatomical substrates after long-term detelencephalation. In Experiment I, experimental pigeons with massive telencephalic ablation and control pigeons were conditioned to key peck for food. Successive discrimination was made under alternating red (variable-ratio reinforcement) and yellow (extinction) lights in one key of the chamber. These relations were interchanged during reversal discrimination. The sessions were run until steady-state rates were achieved. Experiment II analyzed the morphology of the nucleus rotundus and optic tectum in long-term detelencephalated and control birds, using a Klüver-Barrera staining and image analyzer system. Detelencephalated birds had more training sessions for response shaping and steady-state behavior (p<0.001), higher red key peck rates during discrimination (p<0.01), and reversal discrimination indexes around 0.50. Morphometric analysis revealed a decreased number of neurons and increased vascularity, associated with increases in the perimeter (p<0.001) in the nucleus rotundus. In the optic tectum, increases in the perimeter (p<0.05) associated with disorganization in the layers arrangement were seen. The data indicate that telencephalic systems might have an essential function in reversal operant discrimination learning. The structural characteristics of subtelencephalic systems after long-term detelencephalation evidence plastic changes that might be related to functional mechanisms of learning and neural plasticity in pigeons. Hindawi Publishing Corporation 2003 /pmc/articles/PMC2565432/ /pubmed/15152980 http://dx.doi.org/10.1155/NP.2003.247 Text en Copyright © 2003 . |
spellingShingle | Article Cerutti, S. M. Diaz-Cintra, S. Cintra, L. Ferrari, E. A. M. Operant Discriminative Learning and Evidence of Subtelencephalic Plastic Changes After Long-Term Detelencephalation in Pigeons |
title | Operant Discriminative Learning and Evidence of Subtelencephalic
Plastic Changes After Long-Term Detelencephalation in Pigeons |
title_full | Operant Discriminative Learning and Evidence of Subtelencephalic
Plastic Changes After Long-Term Detelencephalation in Pigeons |
title_fullStr | Operant Discriminative Learning and Evidence of Subtelencephalic
Plastic Changes After Long-Term Detelencephalation in Pigeons |
title_full_unstemmed | Operant Discriminative Learning and Evidence of Subtelencephalic
Plastic Changes After Long-Term Detelencephalation in Pigeons |
title_short | Operant Discriminative Learning and Evidence of Subtelencephalic
Plastic Changes After Long-Term Detelencephalation in Pigeons |
title_sort | operant discriminative learning and evidence of subtelencephalic
plastic changes after long-term detelencephalation in pigeons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565432/ https://www.ncbi.nlm.nih.gov/pubmed/15152980 http://dx.doi.org/10.1155/NP.2003.247 |
work_keys_str_mv | AT ceruttism operantdiscriminativelearningandevidenceofsubtelencephalicplasticchangesafterlongtermdetelencephalationinpigeons AT diazcintras operantdiscriminativelearningandevidenceofsubtelencephalicplasticchangesafterlongtermdetelencephalationinpigeons AT cintral operantdiscriminativelearningandevidenceofsubtelencephalicplasticchangesafterlongtermdetelencephalationinpigeons AT ferrarieam operantdiscriminativelearningandevidenceofsubtelencephalicplasticchangesafterlongtermdetelencephalationinpigeons |