Cargando…
Human neural crest cells display molecular and phenotypic hallmarks of stem cells
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566525/ https://www.ncbi.nlm.nih.gov/pubmed/18689800 http://dx.doi.org/10.1093/hmg/ddn235 |
_version_ | 1782159944570634240 |
---|---|
author | Thomas, Sophie Thomas, Marie Wincker, Patrick Babarit, Candice Xu, Puting Speer, Marcy C. Munnich, Arnold Lyonnet, Stanislas Vekemans, Michel Etchevers, Heather C. |
author_facet | Thomas, Sophie Thomas, Marie Wincker, Patrick Babarit, Candice Xu, Puting Speer, Marcy C. Munnich, Arnold Lyonnet, Stanislas Vekemans, Michel Etchevers, Heather C. |
author_sort | Thomas, Sophie |
collection | PubMed |
description | The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. |
format | Text |
id | pubmed-2566525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-25665252009-02-25 Human neural crest cells display molecular and phenotypic hallmarks of stem cells Thomas, Sophie Thomas, Marie Wincker, Patrick Babarit, Candice Xu, Puting Speer, Marcy C. Munnich, Arnold Lyonnet, Stanislas Vekemans, Michel Etchevers, Heather C. Hum Mol Genet Articles The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. Oxford University Press 2008-11-01 2008-08-08 /pmc/articles/PMC2566525/ /pubmed/18689800 http://dx.doi.org/10.1093/hmg/ddn235 Text en © 2008 The Author(s) |
spellingShingle | Articles Thomas, Sophie Thomas, Marie Wincker, Patrick Babarit, Candice Xu, Puting Speer, Marcy C. Munnich, Arnold Lyonnet, Stanislas Vekemans, Michel Etchevers, Heather C. Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title | Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title_full | Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title_fullStr | Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title_full_unstemmed | Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title_short | Human neural crest cells display molecular and phenotypic hallmarks of stem cells |
title_sort | human neural crest cells display molecular and phenotypic hallmarks of stem cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566525/ https://www.ncbi.nlm.nih.gov/pubmed/18689800 http://dx.doi.org/10.1093/hmg/ddn235 |
work_keys_str_mv | AT thomassophie humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT thomasmarie humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT winckerpatrick humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT babaritcandice humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT xuputing humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT speermarcyc humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT munnicharnold humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT lyonnetstanislas humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT vekemansmichel humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells AT etcheversheatherc humanneuralcrestcellsdisplaymolecularandphenotypichallmarksofstemcells |