Cargando…

Serial analysis of mutation spectra (SAMS): a new approach for the determination of mutation spectra of site-specific DNA damage and their sequence dependence

Many mutations occur as a result of DNA synthesis past the site of DNA damage by DNA damage bypass polymerases. The frequency and types of mutations not only depend on the nature of the damage, but also on the sequence context, as revealed from analysis of mutation spectra of DNA exposed to mutagens...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Huafeng, Taylor, John-Stephen
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566868/
https://www.ncbi.nlm.nih.gov/pubmed/18812400
http://dx.doi.org/10.1093/nar/gkn595
Descripción
Sumario:Many mutations occur as a result of DNA synthesis past the site of DNA damage by DNA damage bypass polymerases. The frequency and types of mutations not only depend on the nature of the damage, but also on the sequence context, as revealed from analysis of mutation spectra of DNA exposed to mutagens. Herein we report a new method for the rapid determination of the effect of sequence context on mutagenesis called SAMS for serial analysis of mutation spectra. This technique makes use of the methodology that underlies serial analysis of gene expression (SAGE) to analyze mutations that result from DNA synthesis past a DNA lesion site-specifically embedded in a library of DNA sequences. To illustrate our technique we determined the effect of sequence context on mutations generated by DNA synthesis past a tetrahydrofuran abasic site model by the DNA damage bypass polymerase yeast polymerase η.