Cargando…
caBIG™ VISDA: Modeling, visualization, and discovery for cluster analysis of genomic data
BACKGROUND: The main limitations of most existing clustering methods used in genomic data analysis include heuristic or random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to incorporate prior/expert knowledge, black-box and...
Autores principales: | Zhu, Yitan, Li, Huai, Miller, David J, Wang, Zuyi, Xuan, Jianhua, Clarke, Robert, Hoffman, Eric P, Wang, Yue |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566986/ https://www.ncbi.nlm.nih.gov/pubmed/18801195 http://dx.doi.org/10.1186/1471-2105-9-383 |
Ejemplares similares
-
Metadata mapping and reuse in caBIG™
por: Kunz, Isaac, et al.
Publicado: (2009) -
Cancer Informatics Vision: caBIG™
por: von Eschenbach, Andrew C., et al.
Publicado: (2007) -
The caBIG™ Annotation and Image Markup Project
por: Channin, David S., et al.
Publicado: (2009) -
Impact of caBIG on the European cancer community
por: Warden, R
Publicado: (2011) -
The caBIG® Life Science Business Architecture Model
por: Boyd, Lauren Becnel, et al.
Publicado: (2011)