Cargando…
An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA
The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567003/ https://www.ncbi.nlm.nih.gov/pubmed/18959477 http://dx.doi.org/10.1371/journal.pbio.0060249 |
_version_ | 1782159978426007552 |
---|---|
author | Ruan, Guo-Xiang Allen, Gregg C Yamazaki, Shin McMahon, Douglas G |
author_facet | Ruan, Guo-Xiang Allen, Gregg C Yamazaki, Shin McMahon, Douglas G |
author_sort | Ruan, Guo-Xiang |
collection | PubMed |
description | The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock. |
format | Text |
id | pubmed-2567003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-25670032008-10-28 An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA Ruan, Guo-Xiang Allen, Gregg C Yamazaki, Shin McMahon, Douglas G PLoS Biol Research Article The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock. Public Library of Science 2008-10 2008-10-14 /pmc/articles/PMC2567003/ /pubmed/18959477 http://dx.doi.org/10.1371/journal.pbio.0060249 Text en © 2008 Ruan et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ruan, Guo-Xiang Allen, Gregg C Yamazaki, Shin McMahon, Douglas G An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title | An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title_full | An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title_fullStr | An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title_full_unstemmed | An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title_short | An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA |
title_sort | autonomous circadian clock in the inner mouse retina regulated by dopamine and gaba |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567003/ https://www.ncbi.nlm.nih.gov/pubmed/18959477 http://dx.doi.org/10.1371/journal.pbio.0060249 |
work_keys_str_mv | AT ruanguoxiang anautonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT allengreggc anautonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT yamazakishin anautonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT mcmahondouglasg anautonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT ruanguoxiang autonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT allengreggc autonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT yamazakishin autonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba AT mcmahondouglasg autonomouscircadianclockintheinnermouseretinaregulatedbydopamineandgaba |