Cargando…

In Vitro Identification and Characterization of CD133(pos) Cancer Stem-Like Cells in Anaplastic Thyroid Carcinoma Cell Lines

BACKGROUND: Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs). Anaplastic Thyroid Carcinoma (ATC) is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zito, Giovanni, Richiusa, Pierina, Bommarito, Alessandra, Carissimi, Elvira, Russo, Leonardo, Coppola, Antonina, Zerilli, Monica, Rodolico, Vito, Criscimanna, Angela, Amato, Marco, Pizzolanti, Giuseppe, Galluzzo, Aldo, Giordano, Carla
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568821/
https://www.ncbi.nlm.nih.gov/pubmed/18958156
http://dx.doi.org/10.1371/journal.pone.0003544
Descripción
Sumario:BACKGROUND: Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs). Anaplastic Thyroid Carcinoma (ATC) is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133(pos) cells only in ARO and KAT-4 (64±9% and 57±12%, respectively). These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/CD133(pos) cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133(neg). Furthermore, ARO/CD133(pos) showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133(neg) was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133(pos) in comparison to ARO/CD133(neg) cells. The stem cell markers c-KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133(pos) when compared with ARO/CD133(neg) cells. CONCLUSIONS/SIGNIFICANCE: We describe CD133(pos) cells in ATC cell lines. ARO/CD133(pos) cells exhibit stem cell-like features - such as high proliferation, self-renewal ability, expression of OCT-4 - and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches.