Cargando…
A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data
We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to...
Autores principales: | Druckmann, Shaul, Banitt, Yoav, Gidon, Albert, Schürmann, Felix, Markram, Henry, Segev, Idan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570085/ https://www.ncbi.nlm.nih.gov/pubmed/18982116 http://dx.doi.org/10.3389/neuro.01.1.1.001.2007 |
Ejemplares similares
-
Effective Stimuli for Constructing Reliable Neuron Models
por: Druckmann, Shaul, et al.
Publicado: (2011) -
Correction: Effective Stimuli for Constructing Reliable Neuron Models
por: Druckmann, Shaul, et al.
Publicado: (2013) -
The Role of Hub Neurons in Modulating Cortical Dynamics
por: Gal, Eyal, et al.
Publicado: (2021) -
Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties
por: Hay, Etay, et al.
Publicado: (2011) -
Predicting neuronal activity with an adaptive exponential integrate-and-fire model
por: Marcille, Nicolas, et al.
Publicado: (2007)