Cargando…
Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by...
Autores principales: | Reynolds, Sheila M., Käll, Lukas, Riffle, Michael E., Bilmes, Jeff A., Noble, William Stafford |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570248/ https://www.ncbi.nlm.nih.gov/pubmed/18989393 http://dx.doi.org/10.1371/journal.pcbi.1000213 |
Ejemplares similares
-
Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification
por: Klammer, Aaron A., et al.
Publicado: (2008) -
Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server
por: Käll, Lukas, et al.
Publicado: (2007) -
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
por: Aydin, Zafer, et al.
Publicado: (2011) -
Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens
por: Reynolds, Sheila M., et al.
Publicado: (2010) -
A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data
por: Chen, Xiaoyu, et al.
Publicado: (2010)