Cargando…
PredGPI: a GPI-anchor predictor
BACKGROUND: Several eukaryotic proteins associated to the extracellular leaflet of the plasma membrane carry a Glycosylphosphatidylinositol (GPI) anchor, which is linked to the C-terminal residue after a proteolytic cleavage occurring at the so called ω-site. Computational methods were developed to...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571997/ https://www.ncbi.nlm.nih.gov/pubmed/18811934 http://dx.doi.org/10.1186/1471-2105-9-392 |
Sumario: | BACKGROUND: Several eukaryotic proteins associated to the extracellular leaflet of the plasma membrane carry a Glycosylphosphatidylinositol (GPI) anchor, which is linked to the C-terminal residue after a proteolytic cleavage occurring at the so called ω-site. Computational methods were developed to discriminate proteins that undergo this post-translational modification starting from their aminoacidic sequences. However more accurate methods are needed for a reliable annotation of whole proteomes. RESULTS: Here we present PredGPI, a prediction method that, by coupling a Hidden Markov Model (HMM) and a Support Vector Machine (SVM), is able to efficiently predict both the presence of the GPI-anchor and the position of the ω-site. PredGPI is trained on a non-redundant dataset of experimentally characterized GPI-anchored proteins whose annotation was carefully checked in the literature. CONCLUSION: PredGPI outperforms all the other previously described methods and is able to correctly replicate the results of previously published high-throughput experiments. PredGPI reaches a lower rate of false positive predictions with respect to other available methods and it is therefore a costless, rapid and accurate method for screening whole proteomes. |
---|