Cargando…

A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates

The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently attracted much attention because it has been associated with a range of neurodegenerative conditions including Alzheimer's and Parkinson's diseases. We provide a description...

Descripción completa

Detalles Bibliográficos
Autores principales: Auer, Stefan, Meersman, Filip, Dobson, Christopher M., Vendruscolo, Michele
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572140/
https://www.ncbi.nlm.nih.gov/pubmed/19008938
http://dx.doi.org/10.1371/journal.pcbi.1000222
Descripción
Sumario:The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently attracted much attention because it has been associated with a range of neurodegenerative conditions including Alzheimer's and Parkinson's diseases. We provide a description of a sequence-indepedent mechanism by which polypeptide chains aggregate by forming metastable oligomeric intermediate states prior to converting into fibrillar structures. Our results illustrate that the formation of ordered arrays of hydrogen bonds drives the formation of β-sheets within the disordered oligomeric aggregates that form early under the effect of hydrophobic forces. Individual β-sheets initially form with random orientations and subsequently tend to align into protofilaments as their lengths increase. Our results suggest that amyloid aggregation represents an example of the Ostwald step rule of first-order phase transitions by showing that ordered cross-β structures emerge preferentially from disordered compact dynamical intermediate assemblies.