Cargando…
TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes
Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and a predisposition to cancer. The genetic basis of DC remains unknown in more than 60% of patients. Mutations have been identified in components of the telomerase compl...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society of Hematology
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572788/ https://www.ncbi.nlm.nih.gov/pubmed/18669893 http://dx.doi.org/10.1182/blood-2008-05-153445 |
_version_ | 1782160270982905856 |
---|---|
author | Walne, Amanda J. Vulliamy, Tom Beswick, Richard Kirwan, Michael Dokal, Inderjeet |
author_facet | Walne, Amanda J. Vulliamy, Tom Beswick, Richard Kirwan, Michael Dokal, Inderjeet |
author_sort | Walne, Amanda J. |
collection | PubMed |
description | Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and a predisposition to cancer. The genetic basis of DC remains unknown in more than 60% of patients. Mutations have been identified in components of the telomerase complex (dyskerin, TERC, TERT, NOP10, and NHP2), and recently in one component of the shelterin complex TIN2 (gene TINF2). To establish the role of TINF2 mutations, we screened DNA from 175 uncharacterised patients with DC as well as 244 patients with other bone marrow failure disorders. Heterozygous coding mutations were found in 33 of 175 previously uncharacterized DC index patients and 3 of 244 other patients. A total of 21 of the mutations affected amino acid 282, changing arginine to histidine (n = 14) or cysteine (n = 7). A total of 32 of 33 patients with DC with TINF2 mutations have severe disease, with most developing aplastic anaemia by the age of 10 years. Telomere lengths in patients with TINF2 mutations were the shortest compared with other DC subtypes, but TERC levels were normal. In this large series, TINF2 mutations account for approximately 11% of all DC, but they do not play a significant role in patients with related disorders. This study emphasises the role of defective telomere maintenance on human disease. |
format | Text |
id | pubmed-2572788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | American Society of Hematology |
record_format | MEDLINE/PubMed |
spelling | pubmed-25727882008-11-01 TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes Walne, Amanda J. Vulliamy, Tom Beswick, Richard Kirwan, Michael Dokal, Inderjeet Blood Hematopoiesis and Stem Cells Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and a predisposition to cancer. The genetic basis of DC remains unknown in more than 60% of patients. Mutations have been identified in components of the telomerase complex (dyskerin, TERC, TERT, NOP10, and NHP2), and recently in one component of the shelterin complex TIN2 (gene TINF2). To establish the role of TINF2 mutations, we screened DNA from 175 uncharacterised patients with DC as well as 244 patients with other bone marrow failure disorders. Heterozygous coding mutations were found in 33 of 175 previously uncharacterized DC index patients and 3 of 244 other patients. A total of 21 of the mutations affected amino acid 282, changing arginine to histidine (n = 14) or cysteine (n = 7). A total of 32 of 33 patients with DC with TINF2 mutations have severe disease, with most developing aplastic anaemia by the age of 10 years. Telomere lengths in patients with TINF2 mutations were the shortest compared with other DC subtypes, but TERC levels were normal. In this large series, TINF2 mutations account for approximately 11% of all DC, but they do not play a significant role in patients with related disorders. This study emphasises the role of defective telomere maintenance on human disease. American Society of Hematology 2008-11-01 /pmc/articles/PMC2572788/ /pubmed/18669893 http://dx.doi.org/10.1182/blood-2008-05-153445 Text en © 2008 by The American Society of Hematology This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/us/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Hematopoiesis and Stem Cells Walne, Amanda J. Vulliamy, Tom Beswick, Richard Kirwan, Michael Dokal, Inderjeet TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title | TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title_full | TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title_fullStr | TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title_full_unstemmed | TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title_short | TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
title_sort | tinf2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes |
topic | Hematopoiesis and Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572788/ https://www.ncbi.nlm.nih.gov/pubmed/18669893 http://dx.doi.org/10.1182/blood-2008-05-153445 |
work_keys_str_mv | AT walneamandaj tinf2mutationsresultinveryshorttelomeresanalysisofalargecohortofpatientswithdyskeratosiscongenitaandrelatedbonemarrowfailuresyndromes AT vulliamytom tinf2mutationsresultinveryshorttelomeresanalysisofalargecohortofpatientswithdyskeratosiscongenitaandrelatedbonemarrowfailuresyndromes AT beswickrichard tinf2mutationsresultinveryshorttelomeresanalysisofalargecohortofpatientswithdyskeratosiscongenitaandrelatedbonemarrowfailuresyndromes AT kirwanmichael tinf2mutationsresultinveryshorttelomeresanalysisofalargecohortofpatientswithdyskeratosiscongenitaandrelatedbonemarrowfailuresyndromes AT dokalinderjeet tinf2mutationsresultinveryshorttelomeresanalysisofalargecohortofpatientswithdyskeratosiscongenitaandrelatedbonemarrowfailuresyndromes |