Cargando…

Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients

INTRODUCTION: MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pauley, Kaleb M, Satoh, Minoru, Chan, Annie L, Bubb, Michael R, Reeves, Westley H, Chan, Edward KL
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575615/
https://www.ncbi.nlm.nih.gov/pubmed/18759964
http://dx.doi.org/10.1186/ar2493
_version_ 1782160343660756992
author Pauley, Kaleb M
Satoh, Minoru
Chan, Annie L
Bubb, Michael R
Reeves, Westley H
Chan, Edward KL
author_facet Pauley, Kaleb M
Satoh, Minoru
Chan, Annie L
Bubb, Michael R
Reeves, Westley H
Chan, Edward KL
author_sort Pauley, Kaleb M
collection PubMed
description INTRODUCTION: MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis. METHODS: Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR. RESULTS: Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production. CONCLUSIONS: Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.
format Text
id pubmed-2575615
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25756152008-10-29 Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients Pauley, Kaleb M Satoh, Minoru Chan, Annie L Bubb, Michael R Reeves, Westley H Chan, Edward KL Arthritis Res Ther Research Article INTRODUCTION: MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis. METHODS: Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR. RESULTS: Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production. CONCLUSIONS: Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis. BioMed Central 2008 2008-08-29 /pmc/articles/PMC2575615/ /pubmed/18759964 http://dx.doi.org/10.1186/ar2493 Text en Copyright © 2008 Pauley et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Pauley, Kaleb M
Satoh, Minoru
Chan, Annie L
Bubb, Michael R
Reeves, Westley H
Chan, Edward KL
Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title_full Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title_fullStr Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title_full_unstemmed Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title_short Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
title_sort upregulated mir-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575615/
https://www.ncbi.nlm.nih.gov/pubmed/18759964
http://dx.doi.org/10.1186/ar2493
work_keys_str_mv AT pauleykalebm upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients
AT satohminoru upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients
AT chananniel upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients
AT bubbmichaelr upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients
AT reeveswestleyh upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients
AT chanedwardkl upregulatedmir146aexpressioninperipheralbloodmononuclearcellsfromrheumatoidarthritispatients