Cargando…

Sonic Hedgehog signaling impairs ionizing radiation–induced checkpoint activation and induces genomic instability

The Sonic Hedgehog (Shh) pathway plays important roles in embryogenesis, stem cell maintenance, tissue repair, and tumorigenesis. Haploinsufficiency of Patched-1, a gene that encodes a repressor of the Shh pathway, dysregulates the Shh pathway and increases genomic instability and the development of...

Descripción completa

Detalles Bibliográficos
Autores principales: Leonard, Jennifer M., Ye, Hong, Wetmore, Cynthia, Karnitz, Larry M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575780/
https://www.ncbi.nlm.nih.gov/pubmed/18955550
http://dx.doi.org/10.1083/jcb.200804042
Descripción
Sumario:The Sonic Hedgehog (Shh) pathway plays important roles in embryogenesis, stem cell maintenance, tissue repair, and tumorigenesis. Haploinsufficiency of Patched-1, a gene that encodes a repressor of the Shh pathway, dysregulates the Shh pathway and increases genomic instability and the development of spontaneous and ionizing radiation (IR)–induced tumors by an unknown mechanism. Here we show that Ptc1(+/−) mice have a defect in the IR-induced activation of the ATR–Chk1 checkpoint signaling pathway. Likewise, transient expression of Gli1, a downstream target of Shh signaling, disrupts Chk1 activation in human cells by preventing the interaction of Chk1 with Claspin, a Chk1 adaptor protein that is required for Chk1 activation. These results suggest that inappropriate Shh pathway activation promotes tumorigenesis by disabling a key signaling pathway that helps maintain genomic stability and inhibits tumorigenesis.