Cargando…

Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves

Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Agapiou, John P., McAlpine, David
Formato: Texto
Lenguaje:English
Publicado: American Physiological Society 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576218/
https://www.ncbi.nlm.nih.gov/pubmed/18753329
http://dx.doi.org/10.1152/jn.90393.2008
_version_ 1782160371665076224
author Agapiou, John P.
McAlpine, David
author_facet Agapiou, John P.
McAlpine, David
author_sort Agapiou, John P.
collection PubMed
description Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space.
format Text
id pubmed-2576218
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher American Physiological Society
record_format MEDLINE/PubMed
spelling pubmed-25762182009-01-08 Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves Agapiou, John P. McAlpine, David J Neurophysiol Articles Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space. American Physiological Society 2008-10 2008-08-27 /pmc/articles/PMC2576218/ /pubmed/18753329 http://dx.doi.org/10.1152/jn.90393.2008 Text en Copyright © 2008, American Physiological Society This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm (http://www.the-aps.org/publications/journals/funding_addendum_policy.htm) .
spellingShingle Articles
Agapiou, John P.
McAlpine, David
Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title_full Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title_fullStr Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title_full_unstemmed Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title_short Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves
title_sort low-frequency envelope sensitivity produces asymmetric binaural tuning curves
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576218/
https://www.ncbi.nlm.nih.gov/pubmed/18753329
http://dx.doi.org/10.1152/jn.90393.2008
work_keys_str_mv AT agapioujohnp lowfrequencyenvelopesensitivityproducesasymmetricbinauraltuningcurves
AT mcalpinedavid lowfrequencyenvelopesensitivityproducesasymmetricbinauraltuningcurves