Cargando…
Learning a Novel Myoelectric-Controlled Interface Task
Control of myoelectric prostheses and brain–machine interfaces requires learning abstract neuromotor transformations. To investigate the mechanisms underlying this ability, we trained subjects to move a two-dimensional cursor using a myoelectric-controlled interface. With the upper limb immobilized,...
Autores principales: | Radhakrishnan, Saritha M., Baker, Stuart N., Jackson, Andrew |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576223/ https://www.ncbi.nlm.nih.gov/pubmed/18667540 http://dx.doi.org/10.1152/jn.90614.2008 |
Ejemplares similares
-
Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training
por: Sarasola-Sanz, Andrea, et al.
Publicado: (2022) -
User adaptation in Myoelectric Man-Machine Interfaces
por: Hahne, Janne M., et al.
Publicado: (2017) -
Artificial Proprioceptive Feedback for Myoelectric Control
por: Pistohl, Tobias, et al.
Publicado: (2015) -
Recalibration of myoelectric control with active learning
por: Szymaniak, Katarzyna, et al.
Publicado: (2022) -
Abstract and Proportional Myoelectric Control for Multi-Fingered Hand Prostheses
por: Pistohl, Tobias, et al.
Publicado: (2013)