Cargando…

A review of estimation of distribution algorithms in bioinformatics

Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subj...

Descripción completa

Detalles Bibliográficos
Autores principales: Armañanzas, Rubén, Inza, Iñaki, Santana, Roberto, Saeys, Yvan, Flores, Jose Luis, Lozano, Jose Antonio, Peer, Yves Van de, Blanco, Rosa, Robles, Víctor, Bielza, Concha, Larrañaga, Pedro
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576251/
https://www.ncbi.nlm.nih.gov/pubmed/18822112
http://dx.doi.org/10.1186/1756-0381-1-6
_version_ 1782160377502498816
author Armañanzas, Rubén
Inza, Iñaki
Santana, Roberto
Saeys, Yvan
Flores, Jose Luis
Lozano, Jose Antonio
Peer, Yves Van de
Blanco, Rosa
Robles, Víctor
Bielza, Concha
Larrañaga, Pedro
author_facet Armañanzas, Rubén
Inza, Iñaki
Santana, Roberto
Saeys, Yvan
Flores, Jose Luis
Lozano, Jose Antonio
Peer, Yves Van de
Blanco, Rosa
Robles, Víctor
Bielza, Concha
Larrañaga, Pedro
author_sort Armañanzas, Rubén
collection PubMed
description Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.
format Text
id pubmed-2576251
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25762512008-10-31 A review of estimation of distribution algorithms in bioinformatics Armañanzas, Rubén Inza, Iñaki Santana, Roberto Saeys, Yvan Flores, Jose Luis Lozano, Jose Antonio Peer, Yves Van de Blanco, Rosa Robles, Víctor Bielza, Concha Larrañaga, Pedro BioData Min Review Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain. BioMed Central 2008-09-11 /pmc/articles/PMC2576251/ /pubmed/18822112 http://dx.doi.org/10.1186/1756-0381-1-6 Text en Copyright © 2008 Armañanzas et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Armañanzas, Rubén
Inza, Iñaki
Santana, Roberto
Saeys, Yvan
Flores, Jose Luis
Lozano, Jose Antonio
Peer, Yves Van de
Blanco, Rosa
Robles, Víctor
Bielza, Concha
Larrañaga, Pedro
A review of estimation of distribution algorithms in bioinformatics
title A review of estimation of distribution algorithms in bioinformatics
title_full A review of estimation of distribution algorithms in bioinformatics
title_fullStr A review of estimation of distribution algorithms in bioinformatics
title_full_unstemmed A review of estimation of distribution algorithms in bioinformatics
title_short A review of estimation of distribution algorithms in bioinformatics
title_sort review of estimation of distribution algorithms in bioinformatics
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576251/
https://www.ncbi.nlm.nih.gov/pubmed/18822112
http://dx.doi.org/10.1186/1756-0381-1-6
work_keys_str_mv AT armananzasruben areviewofestimationofdistributionalgorithmsinbioinformatics
AT inzainaki areviewofestimationofdistributionalgorithmsinbioinformatics
AT santanaroberto areviewofestimationofdistributionalgorithmsinbioinformatics
AT saeysyvan areviewofestimationofdistributionalgorithmsinbioinformatics
AT floresjoseluis areviewofestimationofdistributionalgorithmsinbioinformatics
AT lozanojoseantonio areviewofestimationofdistributionalgorithmsinbioinformatics
AT peeryvesvande areviewofestimationofdistributionalgorithmsinbioinformatics
AT blancorosa areviewofestimationofdistributionalgorithmsinbioinformatics
AT roblesvictor areviewofestimationofdistributionalgorithmsinbioinformatics
AT bielzaconcha areviewofestimationofdistributionalgorithmsinbioinformatics
AT larranagapedro areviewofestimationofdistributionalgorithmsinbioinformatics
AT armananzasruben reviewofestimationofdistributionalgorithmsinbioinformatics
AT inzainaki reviewofestimationofdistributionalgorithmsinbioinformatics
AT santanaroberto reviewofestimationofdistributionalgorithmsinbioinformatics
AT saeysyvan reviewofestimationofdistributionalgorithmsinbioinformatics
AT floresjoseluis reviewofestimationofdistributionalgorithmsinbioinformatics
AT lozanojoseantonio reviewofestimationofdistributionalgorithmsinbioinformatics
AT peeryvesvande reviewofestimationofdistributionalgorithmsinbioinformatics
AT blancorosa reviewofestimationofdistributionalgorithmsinbioinformatics
AT roblesvictor reviewofestimationofdistributionalgorithmsinbioinformatics
AT bielzaconcha reviewofestimationofdistributionalgorithmsinbioinformatics
AT larranagapedro reviewofestimationofdistributionalgorithmsinbioinformatics