Cargando…
A review of estimation of distribution algorithms in bioinformatics
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subj...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576251/ https://www.ncbi.nlm.nih.gov/pubmed/18822112 http://dx.doi.org/10.1186/1756-0381-1-6 |
_version_ | 1782160377502498816 |
---|---|
author | Armañanzas, Rubén Inza, Iñaki Santana, Roberto Saeys, Yvan Flores, Jose Luis Lozano, Jose Antonio Peer, Yves Van de Blanco, Rosa Robles, Víctor Bielza, Concha Larrañaga, Pedro |
author_facet | Armañanzas, Rubén Inza, Iñaki Santana, Roberto Saeys, Yvan Flores, Jose Luis Lozano, Jose Antonio Peer, Yves Van de Blanco, Rosa Robles, Víctor Bielza, Concha Larrañaga, Pedro |
author_sort | Armañanzas, Rubén |
collection | PubMed |
description | Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain. |
format | Text |
id | pubmed-2576251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25762512008-10-31 A review of estimation of distribution algorithms in bioinformatics Armañanzas, Rubén Inza, Iñaki Santana, Roberto Saeys, Yvan Flores, Jose Luis Lozano, Jose Antonio Peer, Yves Van de Blanco, Rosa Robles, Víctor Bielza, Concha Larrañaga, Pedro BioData Min Review Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain. BioMed Central 2008-09-11 /pmc/articles/PMC2576251/ /pubmed/18822112 http://dx.doi.org/10.1186/1756-0381-1-6 Text en Copyright © 2008 Armañanzas et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Armañanzas, Rubén Inza, Iñaki Santana, Roberto Saeys, Yvan Flores, Jose Luis Lozano, Jose Antonio Peer, Yves Van de Blanco, Rosa Robles, Víctor Bielza, Concha Larrañaga, Pedro A review of estimation of distribution algorithms in bioinformatics |
title | A review of estimation of distribution algorithms in bioinformatics |
title_full | A review of estimation of distribution algorithms in bioinformatics |
title_fullStr | A review of estimation of distribution algorithms in bioinformatics |
title_full_unstemmed | A review of estimation of distribution algorithms in bioinformatics |
title_short | A review of estimation of distribution algorithms in bioinformatics |
title_sort | review of estimation of distribution algorithms in bioinformatics |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576251/ https://www.ncbi.nlm.nih.gov/pubmed/18822112 http://dx.doi.org/10.1186/1756-0381-1-6 |
work_keys_str_mv | AT armananzasruben areviewofestimationofdistributionalgorithmsinbioinformatics AT inzainaki areviewofestimationofdistributionalgorithmsinbioinformatics AT santanaroberto areviewofestimationofdistributionalgorithmsinbioinformatics AT saeysyvan areviewofestimationofdistributionalgorithmsinbioinformatics AT floresjoseluis areviewofestimationofdistributionalgorithmsinbioinformatics AT lozanojoseantonio areviewofestimationofdistributionalgorithmsinbioinformatics AT peeryvesvande areviewofestimationofdistributionalgorithmsinbioinformatics AT blancorosa areviewofestimationofdistributionalgorithmsinbioinformatics AT roblesvictor areviewofestimationofdistributionalgorithmsinbioinformatics AT bielzaconcha areviewofestimationofdistributionalgorithmsinbioinformatics AT larranagapedro areviewofestimationofdistributionalgorithmsinbioinformatics AT armananzasruben reviewofestimationofdistributionalgorithmsinbioinformatics AT inzainaki reviewofestimationofdistributionalgorithmsinbioinformatics AT santanaroberto reviewofestimationofdistributionalgorithmsinbioinformatics AT saeysyvan reviewofestimationofdistributionalgorithmsinbioinformatics AT floresjoseluis reviewofestimationofdistributionalgorithmsinbioinformatics AT lozanojoseantonio reviewofestimationofdistributionalgorithmsinbioinformatics AT peeryvesvande reviewofestimationofdistributionalgorithmsinbioinformatics AT blancorosa reviewofestimationofdistributionalgorithmsinbioinformatics AT roblesvictor reviewofestimationofdistributionalgorithmsinbioinformatics AT bielzaconcha reviewofestimationofdistributionalgorithmsinbioinformatics AT larranagapedro reviewofestimationofdistributionalgorithmsinbioinformatics |