Cargando…
Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments
BACKGROUND: Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576270/ https://www.ncbi.nlm.nih.gov/pubmed/18834513 http://dx.doi.org/10.1186/1471-2105-9-410 |
_version_ | 1782160382023958528 |
---|---|
author | Parodi, Stefano Pistoia, Vito Muselli, Marco |
author_facet | Parodi, Stefano Pistoia, Vito Muselli, Marco |
author_sort | Parodi, Stefano |
collection | PubMed |
description | BACKGROUND: Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered as not differentially expressed, even if hidden subclasses with different expression values may exist. In this paper we propose a new method for identifying differentially expressed genes, based on the area between the ROC curve and the rising diagonal (ABCR). ABCR represents a more general approach than the standard area under the ROC curve (AUC), because it can identify both proper (i.e., concave) and not proper ROC curves (NPRC). In particular, NPRC may correspond to those genes that tend to escape standard selection methods. RESULTS: We assessed the performance of our method using data from a publicly available database of 4026 genes, including 14 normal B cell samples (NBC) and 20 heterogeneous lymphomas (namely: 9 follicular lymphomas and 11 chronic lymphocytic leukemias). Moreover, NBC also included two sub-classes, i.e., 6 heavily stimulated and 8 slightly or not stimulated samples. We identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%. Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on AUC and t statistics. Moreover, a simple inspection to the shape of such plots allowed to identify the two subclasses in either one class in 13 cases (81%). CONCLUSION: NPRC represent a new useful tool for the analysis of microarray data. |
format | Text |
id | pubmed-2576270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25762702008-10-31 Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments Parodi, Stefano Pistoia, Vito Muselli, Marco BMC Bioinformatics Methodology Article BACKGROUND: Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered as not differentially expressed, even if hidden subclasses with different expression values may exist. In this paper we propose a new method for identifying differentially expressed genes, based on the area between the ROC curve and the rising diagonal (ABCR). ABCR represents a more general approach than the standard area under the ROC curve (AUC), because it can identify both proper (i.e., concave) and not proper ROC curves (NPRC). In particular, NPRC may correspond to those genes that tend to escape standard selection methods. RESULTS: We assessed the performance of our method using data from a publicly available database of 4026 genes, including 14 normal B cell samples (NBC) and 20 heterogeneous lymphomas (namely: 9 follicular lymphomas and 11 chronic lymphocytic leukemias). Moreover, NBC also included two sub-classes, i.e., 6 heavily stimulated and 8 slightly or not stimulated samples. We identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%. Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on AUC and t statistics. Moreover, a simple inspection to the shape of such plots allowed to identify the two subclasses in either one class in 13 cases (81%). CONCLUSION: NPRC represent a new useful tool for the analysis of microarray data. BioMed Central 2008-10-03 /pmc/articles/PMC2576270/ /pubmed/18834513 http://dx.doi.org/10.1186/1471-2105-9-410 Text en Copyright © 2008 Parodi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Parodi, Stefano Pistoia, Vito Muselli, Marco Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title | Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title_full | Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title_fullStr | Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title_full_unstemmed | Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title_short | Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments |
title_sort | not proper roc curves as new tool for the analysis of differentially expressed genes in microarray experiments |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576270/ https://www.ncbi.nlm.nih.gov/pubmed/18834513 http://dx.doi.org/10.1186/1471-2105-9-410 |
work_keys_str_mv | AT parodistefano notproperroccurvesasnewtoolfortheanalysisofdifferentiallyexpressedgenesinmicroarrayexperiments AT pistoiavito notproperroccurvesasnewtoolfortheanalysisofdifferentiallyexpressedgenesinmicroarrayexperiments AT musellimarco notproperroccurvesasnewtoolfortheanalysisofdifferentiallyexpressedgenesinmicroarrayexperiments |