Cargando…
Mining protein networks for synthetic genetic interactions
BACKGROUND: The local connectivity and global position of a protein in a protein interaction network are known to correlate with some of its functional properties, including its essentiality or dispensability. It is therefore of interest to extend this observation and examine whether network propert...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577120/ https://www.ncbi.nlm.nih.gov/pubmed/18844977 http://dx.doi.org/10.1186/1471-2105-9-426 |
_version_ | 1782160469662892032 |
---|---|
author | Paladugu, Sri R Zhao, Shan Ray, Animesh Raval, Alpan |
author_facet | Paladugu, Sri R Zhao, Shan Ray, Animesh Raval, Alpan |
author_sort | Paladugu, Sri R |
collection | PubMed |
description | BACKGROUND: The local connectivity and global position of a protein in a protein interaction network are known to correlate with some of its functional properties, including its essentiality or dispensability. It is therefore of interest to extend this observation and examine whether network properties of two proteins considered simultaneously can determine their joint dispensability, i.e., their propensity for synthetic sick/lethal interaction. Accordingly, we examine the predictive power of protein interaction networks for synthetic genetic interaction in Saccharomyces cerevisiae, an organism in which high confidence protein interaction networks are available and synthetic sick/lethal gene pairs have been extensively identified. RESULTS: We design a support vector machine system that uses graph-theoretic properties of two proteins in a protein interaction network as input features for prediction of synthetic sick/lethal interactions. The system is trained on interacting and non-interacting gene pairs culled from large scale genetic screens as well as literature-curated data. We find that the method is capable of predicting synthetic genetic interactions with sensitivity and specificity both exceeding 85%. We further find that the prediction performance is reasonably robust with respect to errors in the protein interaction network and with respect to changes in the features of test datasets. Using the prediction system, we carried out novel predictions of synthetic sick/lethal gene pairs at a genome-wide scale. These pairs appear to have functional properties that are similar to those that characterize the known synthetic lethal gene pairs. CONCLUSION: Our analysis shows that protein interaction networks can be used to predict synthetic lethal interactions with accuracies on par with or exceeding that of other computational methods that use a variety of input features, including functional annotations. This indicates that protein interaction networks could plausibly be rich sources of information about epistatic effects among genes. |
format | Text |
id | pubmed-2577120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25771202008-11-03 Mining protein networks for synthetic genetic interactions Paladugu, Sri R Zhao, Shan Ray, Animesh Raval, Alpan BMC Bioinformatics Research Article BACKGROUND: The local connectivity and global position of a protein in a protein interaction network are known to correlate with some of its functional properties, including its essentiality or dispensability. It is therefore of interest to extend this observation and examine whether network properties of two proteins considered simultaneously can determine their joint dispensability, i.e., their propensity for synthetic sick/lethal interaction. Accordingly, we examine the predictive power of protein interaction networks for synthetic genetic interaction in Saccharomyces cerevisiae, an organism in which high confidence protein interaction networks are available and synthetic sick/lethal gene pairs have been extensively identified. RESULTS: We design a support vector machine system that uses graph-theoretic properties of two proteins in a protein interaction network as input features for prediction of synthetic sick/lethal interactions. The system is trained on interacting and non-interacting gene pairs culled from large scale genetic screens as well as literature-curated data. We find that the method is capable of predicting synthetic genetic interactions with sensitivity and specificity both exceeding 85%. We further find that the prediction performance is reasonably robust with respect to errors in the protein interaction network and with respect to changes in the features of test datasets. Using the prediction system, we carried out novel predictions of synthetic sick/lethal gene pairs at a genome-wide scale. These pairs appear to have functional properties that are similar to those that characterize the known synthetic lethal gene pairs. CONCLUSION: Our analysis shows that protein interaction networks can be used to predict synthetic lethal interactions with accuracies on par with or exceeding that of other computational methods that use a variety of input features, including functional annotations. This indicates that protein interaction networks could plausibly be rich sources of information about epistatic effects among genes. BioMed Central 2008-10-09 /pmc/articles/PMC2577120/ /pubmed/18844977 http://dx.doi.org/10.1186/1471-2105-9-426 Text en Copyright © 2008 Paladugu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Paladugu, Sri R Zhao, Shan Ray, Animesh Raval, Alpan Mining protein networks for synthetic genetic interactions |
title | Mining protein networks for synthetic genetic interactions |
title_full | Mining protein networks for synthetic genetic interactions |
title_fullStr | Mining protein networks for synthetic genetic interactions |
title_full_unstemmed | Mining protein networks for synthetic genetic interactions |
title_short | Mining protein networks for synthetic genetic interactions |
title_sort | mining protein networks for synthetic genetic interactions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577120/ https://www.ncbi.nlm.nih.gov/pubmed/18844977 http://dx.doi.org/10.1186/1471-2105-9-426 |
work_keys_str_mv | AT paladugusrir miningproteinnetworksforsyntheticgeneticinteractions AT zhaoshan miningproteinnetworksforsyntheticgeneticinteractions AT rayanimesh miningproteinnetworksforsyntheticgeneticinteractions AT ravalalpan miningproteinnetworksforsyntheticgeneticinteractions |