Cargando…

Identification of hot-spot residues in protein-protein interactions by computational docking

BACKGROUND: The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Grosdidier, Solène, Fernández-Recio, Juan
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579439/
https://www.ncbi.nlm.nih.gov/pubmed/18939967
http://dx.doi.org/10.1186/1471-2105-9-447
_version_ 1782160576731938816
author Grosdidier, Solène
Fernández-Recio, Juan
author_facet Grosdidier, Solène
Fernández-Recio, Juan
author_sort Grosdidier, Solène
collection PubMed
description BACKGROUND: The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex. RESULTS: We have applied here normalized interface propensity (NIP) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex. CONCLUSION: The NIP values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.
format Text
id pubmed-2579439
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-25794392008-11-06 Identification of hot-spot residues in protein-protein interactions by computational docking Grosdidier, Solène Fernández-Recio, Juan BMC Bioinformatics Research Article BACKGROUND: The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'). These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex. RESULTS: We have applied here normalized interface propensity (NIP) values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value), and the advantage of not requiring any prior structural knowledge of the complex. CONCLUSION: The NIP values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex. BioMed Central 2008-10-21 /pmc/articles/PMC2579439/ /pubmed/18939967 http://dx.doi.org/10.1186/1471-2105-9-447 Text en Copyright © 2008 Grosdidier and Fernández-Recio; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Grosdidier, Solène
Fernández-Recio, Juan
Identification of hot-spot residues in protein-protein interactions by computational docking
title Identification of hot-spot residues in protein-protein interactions by computational docking
title_full Identification of hot-spot residues in protein-protein interactions by computational docking
title_fullStr Identification of hot-spot residues in protein-protein interactions by computational docking
title_full_unstemmed Identification of hot-spot residues in protein-protein interactions by computational docking
title_short Identification of hot-spot residues in protein-protein interactions by computational docking
title_sort identification of hot-spot residues in protein-protein interactions by computational docking
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579439/
https://www.ncbi.nlm.nih.gov/pubmed/18939967
http://dx.doi.org/10.1186/1471-2105-9-447
work_keys_str_mv AT grosdidiersolene identificationofhotspotresiduesinproteinproteininteractionsbycomputationaldocking
AT fernandezreciojuan identificationofhotspotresiduesinproteinproteininteractionsbycomputationaldocking