Cargando…
Optimal Learning Rules for Discrete Synapses
There is evidence that biological synapses have a limited number of discrete weight states. Memory storage with such synapses behaves quite differently from synapses with unbounded, continuous weights, as old memories are automatically overwritten by new memories. Consequently, there has been substa...
Autores principales: | Barrett, Adam B., van Rossum, M. C. W. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2580035/ https://www.ncbi.nlm.nih.gov/pubmed/19043540 http://dx.doi.org/10.1371/journal.pcbi.1000230 |
Ejemplares similares
-
Event-Based Update of Synapses in Voltage-Based Learning Rules
por: Stapmanns, Jonas, et al.
Publicado: (2021) -
Optimal learning with excitatory and inhibitory synapses
por: Ingrosso, Alessandro
Publicado: (2020) -
Slowdown of BCM plasticity with many synapses
por: Froc, Maxime, et al.
Publicado: (2019) -
Synapse elimination and learning rules coregulated by MHC Class I H2-Db
por: Lee, Hanmi, et al.
Publicado: (2014) -
Optimal percentage of inhibitory synapses in multi-task learning
por: Capano, Vittorio, et al.
Publicado: (2015)