Cargando…
De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes
The pluripotency determining gene, Oct-3/4 (also called Pou5f1) undergoes post implantation silencing in a process mediated by the histone methyltransferase (HMT) G9a. Microarray analysis now shows that this enzyme may operate as a master regulator that inactivates multiple early embryonic genes by...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581722/ https://www.ncbi.nlm.nih.gov/pubmed/18953337 http://dx.doi.org/10.1038/nsmb.1476 |
Sumario: | The pluripotency determining gene, Oct-3/4 (also called Pou5f1) undergoes post implantation silencing in a process mediated by the histone methyltransferase (HMT) G9a. Microarray analysis now shows that this enzyme may operate as a master regulator that inactivates multiple early embryonic genes by bringing about methylated-histone H3K9 heterochromatinization and de novo DNA methylation. Genetic studies in differentiating ES cells demonstrate that a point mutation in the G9a SET domain prevents heterochromatinization, but still allows de novo methylation, while biochemical and functional studies indicate that G9a itself is capable of bringing about de novo methylation through its ankyrin (ANK) domain, by recruiting Dnmt3a/3b independently of its HMT activity. These modifications appear to be programmed for carrying out two separate biological functions, with histone methylation blocking target-gene reactivation in the absence of transcriptional repressors, while DNA methylation prevents reprogramming to the undifferentiated state. |
---|