Cargando…
A machine vision system for automated non-invasive assessment of cell viability via dark field microscopy, wavelet feature selection and classification
BACKGROUND: Cell viability is one of the basic properties indicating the physiological state of the cell, thus, it has long been one of the major considerations in biotechnological applications. Conventional methods for extracting information about cell viability usually need reagents to be applied...
Autores principales: | Wei, Ning, Flaschel, Erwin, Friehs, Karl, Nattkemper, Tim Wilhelm |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582244/ https://www.ncbi.nlm.nih.gov/pubmed/18939996 http://dx.doi.org/10.1186/1471-2105-9-449 |
Ejemplares similares
-
Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine
por: Madero Orozco, Hiram, et al.
Publicado: (2015) -
A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy
por: Hattab, Georges, et al.
Publicado: (2018) -
Quantification of cellular viability by automated microscopy and flow cytometry
por: Sauvat, Allan, et al.
Publicado: (2015) -
Antibiotic-free segregational plasmid stabilization in Escherichia coli owing to the knockout of triosephosphate isomerase (tpiA)
por: Velur Selvamani, Ram Shankar, et al.
Publicado: (2014) -
Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields
por: Dadashzadeh, Mojtaba, et al.
Publicado: (2020)