Cargando…

The LIM-Only Protein FHL2 Mediates Ras-Induced Transformation through Cyclin D1 and p53 Pathways

BACKGROUND: Four and a half LIM-only protein 2 (FHL2) has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs) display reduced l...

Descripción completa

Detalles Bibliográficos
Autores principales: Labalette, Charlotte, Nouët, Yann, Levillayer, Florence, Armengol, Carolina, Renard, Claire-Angélique, Soubigou, Guillaume, Xia, Tian, Buendia, Marie-Annick, Wei, Yu
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583050/
https://www.ncbi.nlm.nih.gov/pubmed/19018287
http://dx.doi.org/10.1371/journal.pone.0003761
Descripción
Sumario:BACKGROUND: Four and a half LIM-only protein 2 (FHL2) has been implicated in multiple signaling pathways that regulate cell growth and tissue homeostasis. We reported previously that FHL2 regulates cyclin D1 expression and that immortalized FHL2-null mouse embryo fibroblasts (MEFs) display reduced levels of cyclin D1 and low proliferative activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we address the contribution of FHL2 in cell transformation by investigating the effects of oncogenic Ras in FHL2-null context. We show that H-RasV12 provokes cell cycle arrest accompanied by accumulation of p53 and p16(INK4a) in immortalized FHL2(−/−) MEFs. These features contrast sharply with Ras transforming activity in wild type cell lines. We further show that establishment of FHL2-null cell lines differs from conventional immortalization scheme by retaining functional p19(ARF)/p53 checkpoint that is required for cell cycle arrest imposed by Ras. However, after serial passages of Ras-expressing FHL2(−/−) cells, dramatic increase in the levels of D-type cyclins and Rb phosphorylation correlates with the onset of cell proliferation and transformation without disrupting the p19(ARF)/p53 pathway. Interestingly, primary FHL2-null cells overexpressing cyclin D1 undergo a classical immortalization process leading to loss of the p19(ARF)/p53 checkpoint and susceptibility to Ras transformation. CONCLUSIONS/SIGNIFICANCE: Our findings uncover a novel aspect of cellular responses to mitogenic stimulation and illustrate a critical role of FHL2 in the signalling network that implicates Ras, cyclin D1 and p53.