Cargando…

Female reproductive synchrony predicts skewed paternity across primates

Recent studies have uncovered remarkable variation in paternity within primate groups. To date, however, we lack a general understanding of the factors that drive variation in paternity skew among primate groups and across species. Our study focused on hypotheses from reproductive skew theory involv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostner, Julia, Nunn, Charles L., Schülke, Oliver
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583106/
https://www.ncbi.nlm.nih.gov/pubmed/19018288
http://dx.doi.org/10.1093/beheco/arn093
Descripción
Sumario:Recent studies have uncovered remarkable variation in paternity within primate groups. To date, however, we lack a general understanding of the factors that drive variation in paternity skew among primate groups and across species. Our study focused on hypotheses from reproductive skew theory involving limited control and the use of paternity “concessions” by investigating how paternity covaries with the number of males, female estrous synchrony, and rates of extragroup paternity. In multivariate and phylogenetically controlled analyses of data from 27 studies on 19 species, we found strong support for a limited control skew model, with reproductive skew within groups declining as female reproductive synchrony and the number of males per group increase. Of these 2 variables, female reproductive synchrony explained more of the variation in paternity distributions. To test whether dominant males provide incentives to subordinates to resist matings by extragroup males, that is, whether dominants make concessions of paternity, we derived a novel prediction that skew is lower within groups when threat from outside the group exists. This prediction was not supported as a primary factor underlying patterns of reproductive skew among primate species. However, our approach revealed that if concessions occur in primates, they are most likely when female synchrony is low, as these conditions provide alpha male control of paternity that is assumed by concessions models. Collectively, our analyses demonstrate that aspects of male reproductive competition are the primary drivers of reproductive skew in primates.