Cargando…

Isolation of novel coregulatory protein networks associated with DNA-bound estrogen receptor alpha

BACKGROUND: DNA-bound transcription factors recruit an array of coregulatory proteins that influence gene expression. We previously demonstrated that DNA functions as an allosteric modulator of estrogen receptor α (ERα) conformation, alters the recruitment of regulatory proteins, and influences estr...

Descripción completa

Detalles Bibliográficos
Autores principales: Schultz-Norton, Jennifer R, Ziegler, Yvonne S, Likhite, Varsha S, Yates, John R, Nardulli, Ann M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585101/
https://www.ncbi.nlm.nih.gov/pubmed/18973695
http://dx.doi.org/10.1186/1471-2199-9-97
Descripción
Sumario:BACKGROUND: DNA-bound transcription factors recruit an array of coregulatory proteins that influence gene expression. We previously demonstrated that DNA functions as an allosteric modulator of estrogen receptor α (ERα) conformation, alters the recruitment of regulatory proteins, and influences estrogen-responsive gene expression and reasoned that it would be useful to develop a method of isolating proteins associated with the DNA-bound ERα using full-length receptor and endogenously-expressed nuclear proteins. RESULTS: We have developed a novel approach to isolate large complexes of proteins associated with the DNA-bound ERα. Purified ERα and HeLa nuclear extracts were combined with oligos containing ERα binding sites and fractionated on agarose gels. The protein-DNA complexes were isolated and mass spectrometry analysis was used to identify proteins associated with the DNA-bound receptor. Rather than simply identifying individual proteins that interact with ERα, we identified interconnected networks of proteins with a variety of enzymatic and catalytic activities that interact not only with ERα, but also with each other. Characterization of a number of these proteins has demonstrated that, in addition to their previously identified functions, they also influence ERα activity and expression of estrogen-responsive genes. CONCLUSION: The agarose gel fractionation method we have developed would be useful in identifying proteins that interact with DNA-bound transcription factors and should be easily adapted for use with a variety of cultured cell lines, DNA sequences, and transcription factors.