Cargando…
Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression
BACKGROUND: Mutations of the superoxide dismutase 1 (SOD1) gene are linked to amyotrophic lateral sclerosis (ALS), an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the developm...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585103/ https://www.ncbi.nlm.nih.gov/pubmed/18947433 http://dx.doi.org/10.1186/1471-2164-9-500 |
_version_ | 1782160839321583616 |
---|---|
author | Malaspina, Andrea Jokic, Natasa Huang, Wenlong L Priestley, John V |
author_facet | Malaspina, Andrea Jokic, Natasa Huang, Wenlong L Priestley, John V |
author_sort | Malaspina, Andrea |
collection | PubMed |
description | BACKGROUND: Mutations of the superoxide dismutase 1 (SOD1) gene are linked to amyotrophic lateral sclerosis (ALS), an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. RESULTS: We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. CONCLUSION: this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration. |
format | Text |
id | pubmed-2585103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25851032008-11-20 Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression Malaspina, Andrea Jokic, Natasa Huang, Wenlong L Priestley, John V BMC Genomics Research Article BACKGROUND: Mutations of the superoxide dismutase 1 (SOD1) gene are linked to amyotrophic lateral sclerosis (ALS), an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. RESULTS: We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. CONCLUSION: this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration. BioMed Central 2008-10-23 /pmc/articles/PMC2585103/ /pubmed/18947433 http://dx.doi.org/10.1186/1471-2164-9-500 Text en Copyright © 2008 Malaspina et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Malaspina, Andrea Jokic, Natasa Huang, Wenlong L Priestley, John V Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title | Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title_full | Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title_fullStr | Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title_full_unstemmed | Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title_short | Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression |
title_sort | comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the g93a sod1 gene mutation and by mechanical compression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585103/ https://www.ncbi.nlm.nih.gov/pubmed/18947433 http://dx.doi.org/10.1186/1471-2164-9-500 |
work_keys_str_mv | AT malaspinaandrea comparativeanalysisofthetimedependentfunctionalandmolecularchangesinspinalcorddegenerationinducedbytheg93asod1genemutationandbymechanicalcompression AT jokicnatasa comparativeanalysisofthetimedependentfunctionalandmolecularchangesinspinalcorddegenerationinducedbytheg93asod1genemutationandbymechanicalcompression AT huangwenlongl comparativeanalysisofthetimedependentfunctionalandmolecularchangesinspinalcorddegenerationinducedbytheg93asod1genemutationandbymechanicalcompression AT priestleyjohnv comparativeanalysisofthetimedependentfunctionalandmolecularchangesinspinalcorddegenerationinducedbytheg93asod1genemutationandbymechanicalcompression |