Cargando…
Image-based crystal detection: a machine-learning approach
The ability of computers to learn from and annotate large databases of crystallization-trial images provides not only the ability to reduce the workload of crystallization studies, but also an opportunity to annotate crystallization trials as part of a framework for improving screening methods. Here...
Autores principales: | Liu, Roy, Freund, Yoav, Spraggon, Glen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585161/ https://www.ncbi.nlm.nih.gov/pubmed/19018095 http://dx.doi.org/10.1107/S090744490802982X |
Ejemplares similares
-
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
por: Bischoff, Daniel, et al.
Publicado: (2022) -
CrystalMELA: a new crystallographic machine learning platform for crystal system determination
por: Corriero, Nicola, et al.
Publicado: (2023) -
Detection of Suicidality Among Opioid Users on Reddit: Machine Learning–Based Approach
por: Yao, Hannah, et al.
Publicado: (2020) -
Machine learning based approach to exam cheating detection
por: Kamalov, Firuz, et al.
Publicado: (2021) -
Comprehensive Histopathology Imaging in Pancreatic Biopsies: High Definition Infrared Imaging with Machine Learning Approach
por: Liberda, Danuta, et al.
Publicado: (2023)